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PREFACE 

The  "  Saturday  Morning  Lectures  "  delivered  by  Pro- 
fessor Hadamard  at  Columbia  University  in  the  fall  of 

1911,  on  subjects  that  extend  into  both  mathematics  and 

physics,  were  taken  down  by  Dr.  A.  N.  Goldsmith  of  the 

College  of  the  City  of  New  York,  and  after  revision  by  the 

author  in  1914  are  now  published  for  the  benefit  of  a  wider 

audience.  The  author  has  requested  that  his  thanks  be  ex- 

pressed in  this  place  to  Dr.  Goldsmith  for  writing  out  and 

revising  the  lectures,  and  to  Professor  Kasner  of  Columbia 

for  reading  the  proofs. 

in 
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LECTURE  I 

The  Determination  of  Solutions  of  Linear  Partial  Dif- 
ferential Equations  by  Boundary  Conditions 

In  this  lecture  we  shall  limit  ourselves  to  the  consideration  of 

linear  partial  differential  equations  of  the  second  order. 

It  is  natural  that  general  solutions  of  these  equations  were 

first  sought,  but  such  solutions  have  proven  to  be  capable  of 
successful  employment  only  in  the  case  of  ordinary  differential 

equations.  In  the  case  of  partial  differential  equations  employed 

in  connection  with  physical  problems,  their  use  must  be  given 

up  in  most  circumstances,  for  two  reasons:  first,  it  is  in  gen- 
eral impossible  to  get  the  general  solution  or  general  integral; 

and  second,  it  is  in  general  of  no  use  even  when  it  is  obtained. 

Our  problem  is  to  get  a  function  which  satisfies  not  only  the 

differential  equation  but  also  other  conditions  as  well;  and  for 

this  the  knowledge  of  the  general  integral  may  be  and  is  very 

often  quite  insufficient.  For  instance,  in  spite  of  the  fact  that 

we  have  the  general  solution  of  Laplace's  equation,  this  does 
not  enable  us  to  solve,  without  further  and  rather  complicated 

calculations,  ordinary  problems  depending  on  that  equation 
such  as  that  of  electric  distribution. 

Each  partial  differential  equation  gives  rise,  therefore,  not  to 

one  general  problem,  consisting  in  the  investigation  of  all  solu- 
tions altogether,  but  to  a  number  of  definite  problems,  each  of 

them  consisting  in  the  research  of  one  peculiar  solution,  defined, 

not  by  the  differential  equation  alone,  but  by  the  system  of  that 

equation  and  some  accessory  data. 
The  question  before  us  now  is  how  these  data  may  be  chosen 

in  order  that  the  problem  shall  be  "correctly  set."  But  what 
do  we  mean  by  "correctly  set"?  Here  we  have  to  proceed  by analogy. 
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In  ordinary  algebra,  this  term  would  be  applied  to  problems 

in  which  the  number  of  the  conditions  is  equal  to  that  of  the 

unknowns.  To  those  our  present  problems  must  be  analogous. 

In  general,  correctly  set  problems  in  ordinary  algebra  are  char- 
acterized by  the  fact  of  having  solutions,  and  in  a  finite  number. 

(We  can  even  characterize  them  as  having  a  unique  solution 

if  the  problem  is  linear,  which  case  corresponds  to  that  of  our 

present  study.)  Nevertheless,  a  difficulty  arises  on  account  of 

exceptional  cases. 

Let  us  consider  a  system  of  linear  algebraic  equations: 

(1)   

the  number  n  of  these  equations  being  precisely  equal  to  the 

number  of  unknowns.  If  the  determinant  formed  by  the  co- 
efficients of  these  equations  is  not  zero,  the  problem  has  only 

one  solution.  If  the  determinant  is  zero,  the  problem  is  in 

general  impossible.  At  a  first  glance,  this  makes  our  aforesaid 
criterion  ineffective,  for  there  seems  to  be  no  difference  between 

that  case  and  that  in  which  the  number  of  equations  is  greater  than 

that  of  the  unknowns,  where  impossibility  also  generally  exists. 

(Geometrically  speaking,  two  straight  lines  in  a  plane  do  not 

meet  if  they  are  parallel,  and  in  that  they  resemble  two  straight 

lines  given  arbitrarily  in  three-dimensional  space.)  The  dif- 

ference between  the  two  cases  appears  if  we  choose  the  b's  (second 
members  of  the  equation  (1) )  properly;  that  is,  in  such  manner 

that  the  system  becomes  again  possible.  If  the  number  of 

equations  were  greater  than  n,  the  solution  would  (in  general) 

again  be  unique;  but,  if  those  two  numbers  are  equal,  the  problem 
when  ceasing  to  be  impossible,  proves  to  be  indeterminate. 

Things  occur  in  the  same  way  for  every  problem  of  algebra. 
For  instance,  the  three  equations 

/(•'•>  y,z)  =  a 

g(.r,  y,  z)  =  b 

f+g  =  c 
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between  the  three  unknowns  x,  y,  z,  constitute  an  impossible 
system  if  c  is  not  equal  to  a  +  b,  but  if  c  equals  a  +  b,  that 
system  is  in  general  indeterminate. 

Moreover,  this  fact  has  been  both  extended  and  made  precise 
by  a  most  beautiful  theorem  due  to  Schoenflies. 

Let 

(2)      /(*,  y,  z)  =  X,        g(x,  y,  z)  =  Y,        h(x,  y,  z)  =  Z 

be  the  equations  of  a  space-transformation,  the  functions  /,  g,  h 
being  continuous.  Let  us  suppose  that  within  a  given  sphere 

(x2  +  y2  +  z2  —  1,  for  instance),  two  points  (x,  y,  z)  cannot  give 
the  same  single  point  (X,  Y,  Z) :  in  other  words,  that  f(x,  y,  z) 

=  /0'>  y',  z')>  g(x,  y,  z)  =  g(x',  y',  z'):  h(x,  y,  z)  =  h(x',  y',  z') 
cannot  be  verified  simultaneously  within  that  sphere  unless 

x  =  x1 ',  y  —  y' ',  z  =  z' .  Let  S  denote  the  surface  corresponding 
to  the  surface  s  of  the  sphere;  that  is,  the  surface  described  by 

the  point  (A",  Y,  Z)  when  {x,  y,  z)  describes  s.  If  in  equation  (2) 
we  consider  now  X,  Y,  Z  as  given  and  x,  y,  z  as  unknown,  our 

hypothesis  obviously  means  that  those  equations  cannot  admit 

of  more  than  one  solution  within  s.  Now  Schoenflies'  theorem 
says  that  those  equations  will  admit  of  a  solution  for  any  (X,  Y,  Z) 
that  may  be  chosen  within  S.  Of  course  the  theorem  holds 

for  spaces  of  any  number  of  dimensions.  It  is  obvious  that  this 

theorem  illustrates  most  clearly  the  aforesaid  relation  between 

the  fact  of  the  solution  being  unique  and  the  fact  that  that 

solution  necessarily  exists.1 
As  said  above,  the  theorem  is  in  the  first  place  remarkable  for 

its  great  generality,  as  it  implies  concerning  the  functions  /,  g,  h 

no  other  hypothesis  but  that  of  continuity.  But  its  significance 
is  in  reality  much  more  extensive  and  covers  also  the  functional 

field.     I  consider  that  its  generalizations  to  that  field  cannot 

1  We  must  note  nevertheless,  that  in  it  the  unique  solution  is  opposed  not 
only  to  solutions  in  infinite  number  (as  above),  but  also  to«any  more  than 

one.  For  instance,  the  fact  that  x2  =  X  may  have  no  solution  in  x,  is.  from 

the  point  of  view  of  Schoenflies'  theorem,  in  relation  with  the  fact  that  for 
other  values  of  X,  it  may  have  two  solutions. 
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fail  to  appear  in  great  number  as  a  consequence  of  future  dis- 
coveries. This  remarkable  importance  will  be  my  excuse  for 

digressing,  although  the  theorem  in  question  is  only  indirectly 

related  to  our  main  subject.  The  general  fact  which  it  emphasizes 

and  which  we  stated  in  the  beginning,  finds  several  applications 

in  the  questions  reviewed  in  this  lecture.  It  may  be  taken  as  a 

criterion  whether  a  given  linear  problem  is  to  be  considered  as 

analogous  to  the  algebraic  problems  in  which  the  number  of 

equations  is  equal  to  the  number  of  unknown.  This  will  be  the 

case  always  when  the  problem  is  possible  and  determinate  and 
sometimes  even  when  it  is  impossible,  if  it  cannot  cease  (by 

further  particularization  of  the  data)  to  be  impossible  otherwise 

than  by  becoming  indeterminate. 

Let  us  return  to  partial  differential  equations.  Cauchy 

was  the  first  to  determine  one  solution  of  a  differential  equa- 
tion from  initial  conditions.  For  an  ordinary  equation  such  as 

f(x,  y,  dy/dx,  d?y/dx2)  =  0,  we  are  given  the  values  of  y  and 
dy/dx  for  a  particular  value  of  x.  Cauchy  extended  that  result 

to  partial  differential  equations. 

Let  F{u,  x,  y,  z,  du/dx,  du/dy,  du/dz,  d2u/dx2,  •  •  • )  =  0  be  a  given 
equation  of  the  second  order  and  let  it  be  granted  that  we  can 

solve  it  with  respect  to  d2u/dx2.  Thus  we  obtain  (d2u/dx2)  +  Fi 
=  0  where  Fi  is  a  function  of  all  of  the  above  quantities,  except 

dhi/dx2.     Then  Cauchy's  problem  arises  by  giving  the  values 
OIL 

(3)  u  =  <p(y,  z),      ̂   -  \p(y,  z) 

of  u  and  du/dx  for  x  =  0.  (These  data  must  be  replaced  by 

analogous  data  if,  instead  of  the  plane  x  =  0,  we  introduce 
another  surface.)  Indeed,  under  the  above  hypothesis  concerning 

the  possibility  of  solving  the  equation  with  respect  to  d2u/dx2, 
and  on  the  supposition  that  the  functions  F\,  <f>  and  \p  are  holo- 
morphic,  Cauchy,  and  after  him,  Sophie  Kowalevska,  showed 
that  in  this  case  there  is  indeed  one  and  only  one  solution. 

This  solution  can  be  expanded  by  Taylor's  series  in  the  form 
u  —  u0  +  xu\  +  xhii  +  •  •  •  where  u0,  Wi,  •  •  •  can  be  calculated. 
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The  above  theorems  are  true  for  most  equations  arising  in 

connection  with  physical  problems,  for  example 

(E)  v>M=f|. 
But  in  general  these  theorems  may  be  false.  This  we  shall 

realize  if  we  consider  Dirichlet's  problem:  to  determine  the 

solution  of  Laplace's  equation 

for  points  within  a  given  volume  when  given  its  values  at  every 

point  of  the  boundary  surface  S  of  that  volume. 

It  is  a  known  fact  that  this  problem  is  a  correctly  set  one:  it 

has  one,  and  only  one,  solution.  Therefore,  this  cannot  be  the 

case  with  Cauchy's  problem,  in  which  both  u  and  one  of  its 
derivatives  are  given  at  every  point  of  S.  If  the  first  of  these 

data  is  by  itself  (in  conjunction  with  the  differential  equation) 

sufficient  to  determine  the  unknown  function,  we  have  no  right 

to  introduce  any  other  supplementary  condition.  How  is  it 

therefore  that,  by  the  demonstration  of  Sophie  Kowalevska,  the 

same  problem  with  both  data  proves  to  be  possible? 

Two  discrepancies  appear  between  the  sense  of  the  question 

in  one  case  and  in  the  other:  (a)  In  the  theorem  of  Sophie 

Kowalevska,  u  has  only  to  exist  in  the  immediate  neighborhood 

of  the  initial  surface  <S.  In  Dirichlet's  problem,  it  has  to  exist 
and  to  be  well  determined  in  the  whole  volume  limited  by  S. 

We  therefore  require  more  in  the  latter  case  than  in  the  former, 

and  it  might  be  thought  that  this  is  sufficient  to  resolve  the 

apparent  contradiction  met  with  above. 
In  fact,  however,  this  is  not  the  case  and  we  must  also  take 

account  of  the  second  discrepancy,  (b)  The  data,  in  the  case  of 

the  Cauchy-Kowalevska  demonstration,  are,  as  we  said,  sup- 
posed to  be  analytic:  the  functions  <p,  \j/  (second  members  of 

(3))  considered  as  functions  of  y,  z,  are  taken  as  given  by  con- 

vergent Taylor's  expansions  in  the  neighborhood  of  every  point 



6  FIRST   LECTURE 

of  the  plane  x  =  0  in  the  region  where  the  question  is  to  be  solved. 

Nothing  of  the  kind  is  supposed  in  the  study  of  Dirichlet's 
problem.  Not  even  the  existence  of  the  first  derivatives  of  u, 

corresponding  to  displacements  on  <S,  is  postulated,  and  in  some 
researches,  certain  discontinuities  of  these  values  are  admitted. 

Both  these  circumstances  play  their  role  in  the  explanation  of 
the  difference  between  the  two  results  discussed  above. 

That  (a)  is  one  reason  for  that  difference  is  evident,  for  of 

course,  if  a  function  is  required  to  be  harmonic  (i.  e.  to  admit 

everywhere  derivatives  and  to  verify  Laplace's  equation)  within 
a  sphere,  its  values  and  those  of  its  normal  derivative,  may  not 

together  be  chosen  arbitrarily  on  the  surface  even  if  analytic. 

To  show  that  (a)  is  not  sufficient  for  the  required  explanation, 

let  us  take  the  geometric  terms  of  the  problem  in  the  same  way 

as  Cauchy.  We  therefore  suppose  that,  u  being  defined  by 

Laplace's  equation,  the  accessory  data  given  to  determine  it 
are  the  values  of  u,  and  du/dx  on  the  plane  x  —  0,  or,  more 
exactly,  on  a  certain  portion  A  of  that  plane;  u  will  also  not  be 

required,  now,  to  exist  in  the  whole  space;  its  domain  of  existence 

may  be  limited,  for  instance,  to  a  certain  distance,  however  small, 

from  our  plane  x  =  0  (in  the  environs  of  0)  provided  that 
distance  be  finite  and  not  infinitesimal. 

Now  under  these  conditions,  in  general  such  a  function  u 

does  not  exist,  if  the  data  are  not  analytic  and  are  chosen  arbi- 
trarily. One  sees  then  a  fact  which  never  appeared  as  long  as 

ordinary  differential  equations  were  alone  concerned,  namely, 

that  the  results  are  utterly  different  according  as  the  analytic 

character  of  the  data  is  postulated  or  not. 

3. 

Of  these  two  opposite  results  which  is  to  be  considered  as 

giving  us  a  more  correct  and  adequate  idea  of  the  nature  of 

things?  I  do  not  say  as  the  true  one,  for  of  course  each  one  is  so 

under  proper  specifications. 
Some  mathematicians  still  incline  to  prefer  the    old    point 
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of  view  of  Cauchy,  one  of  their  reasons  being  that,  as  known 

since  Weierstrass,  any  function,  analytic  or  not,  can  be  replaced 

with  any  given  approximation  by  an  analytic  one,  (more  pre- 
cisely by  a  polynomial).  Therefore  the  fact  that  a  function 

belongs  to  one  or  the  other  of  those  two  categories  seems  to  them 

to  be  immaterial.  I  cannot  agree  with  this  point  of  view. 

That  the  thing  is  not  immaterial,  seems  to  me  to  follow  directly 

from  what  we  have  just  stated.  And  it  cannot  fail  to  be  put  in 

evidence  if  we  think  not  only  of  the  mere  existence  of  the  solu- 
tion, but  of  its  properties  and  the  means  of  calculating  it.  If 

Cauchy 's  problem,  for  equation  (e),  ceases  to  be  possible,  as  a 
rule,  when  the  functions  designated  by  <p,  \f/  are  not  analytic, 

then  every  expression  for  the  solution  must  depend  essentially 

on  that  analyticity  and  especially  upon  the  radii  of  convergence 

of  the  developments  of  <p,  if/.  In  other  words,  let  us  imagine 
that  the  functions  <p,  ip  be  replaced  by  other  functions  <p\,  \pi, 

the  differences  <p\  —  <p,  yp\  —  \f/  being  very  small  for  every 
system  of  real  values  of  y,  x  within  Q  (and  perhaps  also  the 
differences  of  some  derivatives  being  small).  However  slight 

the  alteration  may  be  it  rigorously  follows  from  the  afore- 
said theorem  of  Weierstrass,  that  the  radii  of  convergence  of 

the  developments  in  power  series  (if  existing  at  all)  may  and 

will  be,  in  general,  completely  changed;  so  the  calculations  lead- 
ing to  the  solution  will  necessarily  be  changed  also. 

If  that  solution  itself  should  undergo  but  a  slight  change,  this 

would  at  once  show  us  that  these  methods  of  calculation  ought 

to  be  of  quite  an  artificial  nature,  masking  completely  the  quali- 

tative properties  of  the  required  result.1  But  in  fact,  it  is  clear 
chat  matters  are  not  as  just  assumed  above.  The  alteration 

Mi  —  u  produced  on  the  values  of  u  by  our  slight  modification 

1  The  solution  by  development  in  Taylor's  series  is,  in  general,  for  problems 
of  that  kind,  the  only  one  which  can  be  given.  I  know  but  one  exception, 

which  is  Schwarz's  method  for  minimal  surfaces,  when  a  curve  of  the  surface 
and  the  corresponding  succession  of  tangent  planes  are  given.  This  method 
rests  on  the  favorable  and  exceptional  circumstance  that  complex  variables 

can  be  employed  for  the  study  of  real  points  of  such  a  surface. 
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of  <p,  \p  will  be  generally  important  and  often  complete,  as  is 

evident1  by  the  fact  that  u  will  cease  completely  to  exist  when 
<p,  $  become  non-analytical.  This  proves,  first  of  all,  that  the 

application  of  Weierstrass'  theorem  in  that  case  is  illegitimate, 
since  it  gives  an  approximation  for  the  data  but  nothing  of  the 
kind  for  the  unknown. 

Then  we  see  also  that  such  a  problem  and  calculation,  the 

results  of  which  are  utterly  changed  by  an  infinitesimal  error  in 

starting,  can  have  no  meaning  in  their  applications. 

This  leads  to  my  second  and  chief  reason  for  considering 

only  the  results  which  correspond  to  non-analytic  data,  namely, 
the  remarkable  accordance  between  them  and  the  results  to 

which  physical  applications  bring  us. 
This  accordance  is  the  more  interesting  from  the  fact  of  its 

results  being  unexpected.  Our  former  point  of  view — i.  e.  that 

of  the  Cauchy-Kowalevska  theorem — evidently  constitutes  a 
complete  analogy  to  the  case  of  ordinary  differential  equations. 

But  from  our  latter  point  of  view — which  is  also  the  point  of 

view  in  problems  set  by  physical  applications — every  analogy 
seems  to  be  upset.  The  results  often  seem  almost  inco- 

herent, they  will  give  opposite  conclusions  in  apparently  similar 

questions. 
A  first  instance  of  this  was  given  above.  We  know  that 

Cauchy's  problem  is  now  impossible  for  Laplace's  equation 

d2u      d2u      d2u 

fa2+df+d? 

but,  on  the  contrary,  in  the  equation  of  spherical  waves 

W  dx2~*~  dy2_t~  dz2       dt2  ' 
1  If  Mi  —  u  should  be  uniformly  very  small  at  the  same  time  as  <pi  —  <p, 

\fn  —  41,  it  follows  from  the  well-known  convergence  theorem  of  Cauchy  that, 
letting  the  analytic  functions  (pi,  <l>\,  converge  towards  certain  (non-analytic) 
limiting  functions  <p,  ip,  the  corresponding  solution  «i  ought  to  converge 
uniformly  towards  a  certain  limit  u,  which  would  be  solution  of  the  problem 
with  the  data  <e,  $. 

(«)  A*u==  ̂ 72  +  ̂ 72+^2  =  0; 
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or  of  the  cylindrical  waves 

<E>)  —  +  — ^  ;  dx*  +  dp? 

we  may  assign  arbitrarily  the  values  (whether  analytical  or  not) 

of  u  and  hujU  for  t  =  0,  and  Cauchy's  problem  set  in  that  way 
has  a  solution  (which  is  unique).  In  this  latter  case  it  is  like 

a  problem  in  algebra  in  which  the  number  of  equations  is  equal 

to  the  number  of  unknowns;  in  the  former,  like  a  problem  in 

which  the  number  of  equations  is  superior1  to  the  number  of 
unknowns. 

It  never  could  have  been  imagined  a  priori  that  such  a  difference 

could  depend  on  the  mere  changing  of  sign  of  a  coefficient  in 

the  equation.  But  it  is  entirely  conformable  to  the  physical 

meaning  of  the  equations.  Equation  (E'),  for  instance  governs 
the  small  motions  of  a  homogeneous  and  isotropic  medium,  like  a 

homogeneous  gas;  and  the  corresponding  Cauchy's  problem, 
enunciated  above,  represents  the  definition  of  the  motion  by 

giving  the  state  of  positions  and  speeds  at  the  origin  of  times. 

On  the  contrary,  equation  (e),  which  also  governs  many  physical 

phenomena,  never  leads  to  problems  of  that  kind  but  exclusively 

to  problems  of  the  Dirichlet  type.  The  analytical  criterion  by 

which  those  two  kinds  of  partial  differential  equations  are  to  be 

distinguished,  is  known:  it  is  given  by  what  are  called  the 

characteristics  of  an  equation.  The  characteristics  of  an  equa  tion 

jrrespond  analytically  with  what  the  physicist  calls  the  waves 

compatible  with  this  equation,  and  are  calculated  in  the  following 

way.     Let  a  wave  be  represented  by  the  equation  P(x,  y,  z,  t) 

1  We  could  be  tempted  to  apply  in  that  case  the  remark  made  in  the  be- 
ginning (p.  4)  concerning  such  impossible  problems,  which,  notwithstanding 

that  circumstance,  must  be  considered  as  resembling  "correctly  set"  ones. 
This,  however,  is  not  really  applicable;  for  we  have  seen  that  the  category 

alluded  to  is  recognized  by  the  fact  that  the  problem  may,  under  more  special 
circumstances,  become  indeterminate.  Now,  this  can  never  be  the  case  in 

the  present  question:  it  follows  from  a  theorem  of  Holmgren  ("Archiv  fiir 
Mathematik")  that  the  solution  of  Cauchy's  problem,  if  existent,  is  in  every 
possible  case  unique. 
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=  0.  In  the  given  equation,  for  instance,  if  A2u  —  l/a?-d2u/d1?  =  0 

and  A2u  be  replaced  by  (dP/dx)2  +  (dP/dy)2  +  (dP/dz)2  and 

-  (l/a2)(d2u/dP)  by  -  (l/a2)(dP/dt)2  the  condition  thus  obtained 

(which  is  a  partial  differential  equation  of  the  first  order). 

It  must  be  verified  by  the  function  P.  When  this  holds, 

P(x,  y,  z,  t)  =  0  is  said  to  be  a  characteristic  of  the  given  equation. 
For  equation  (E),  such  characteristics  exist  (that  is,  are  real); 

this  case  is  called  the  hyperbolic  one. 

Laplace's  equation,  A2u  =  0,  on  making  the  above  substitu- 
tion, leads  to  the  equation 

which  has  no  real  solution.  Therefore,  in  this  case  there  are  no 

waves  and  we  have  the  so-called  elliptic  case.1  Cauchy's  problem 
can  be  set  for  a  hyperbolic  equation,  but  not  for  an  elliptic  one. 

Does  this  mean  that  for  a  hyperbolic  equation  Cauchy's  problem 
will  always  arise?  No,  the  matter  is  not  quite  so  simple.  For 

instance,  in  equation  (E)  or  (E')t  we  could  not  choose  arbi- 
trarily u  and  du/dy  for  x  =  0;  this  would  lead  us  again  to  an 

impossible  problem  (in  the  non-analytic  case,  of  course). 
The  physical  explanation  of  this  lies  in  the  fact  that  there  are, 

besides  the  partial  differential  equation,  two  kinds  of  conditions 

determining  the  course  of  a  phenomenon,  viz.,  the  initial  and  the 

boundary  conditions.  The  former  are  of  the  type  of  Cauchy 

and  they  alone  intervene  in  Cauchy's  problem  quoted  above 
for  the  equation  of  sound. 

But  the  boundary  conditions  are  always  of  the  type  of  Dirich- 
let.  They  are  the  only  ones  which  can  occur  in  an  elliptic 

equation,  but  even  in  a  hyperbolic  one  they  generally  present 

1  An  intermediate  case  exists  A*u  —  k(du/dt)  =  0.  This  is  semi-definite 
and  is  termed  the  parabolic  one  (example:  the  equation  of  heat). 
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themselves  together  with  initial  ones.  This  gives  place  to  so- 

called  mixed  problems  where  the  two  kinds  of  data  (belonging 

respectively  to  the  Cauchy  and  to  the  Dirichlet  type)  intervene 

simultaneously  for  the  determination  of  the  unknown. 

In  equation  (E),  t  =  0  represents  the  origin  of  time  and  can 

give  place  to  initial  conditions,  having  the  form,  of  Cauchy. 

But  no  such  conditions  can  correspond  to  x  =  0,  which  represents 

a  geometric  boundary. 

More  or  less  complicated  cases  can  arise  for  various  disposi- 

tions of  the  configurations,  giving  place  to  other  paradoxical 

and  apparently  contradictory  results,  which  can  however  all  be 

explained  in  the  same  way.  Moreover,  there  are  other  types 

of  linear  partial  differential  equations,1  which  do  not  govern  any 

physical  phenomena.  The  determination  of  solutions  has  been 

studied2  in  the  analytic  case  but  no  sort  of  determination  of 

that  kind  for  non-analytic  data  has  been  discovered  hitherto. 

We  see  that  from  this  non-analytic  point  of  view  the  accord- 

ance between  mathematical  results  and  the  suggestions  of 

physics  holds  perfectly.  This  accordance  must  not  surprise  us, 

for,  as  we  saw  above,  it  corresponds  to  the  fact  that  a  problem 

which  is  possible  only  with  analytic  data  can  have  no  physical 

meaning.  But  it  remains  worth  all  our  attention.  No  other 

example  better  illustrates  Poincare's  views3  on  the  help  which 

physics  brings  to  analysis  as  expressed  by  him  in  such  statements 

as  the  following:  "It  is  physics  which  gives  us  many  important 

problems,  which  we  would  not  have  thought  of  without  it," 

and  "  It  is  by  the  aid  of  physics  that  we  can  foresee  the  solutions." 
1  The  so-called  non-normal  hyperbolic  equations,  such  as 

*»  +  ...**  _**   A2!L  =  0(m>l,n>l) 
dx?^         dxj       dyi>  dyj 

*  By  Hamel  (Inaugural  Dissertation,  Gottingen)  and  Coulon  (thesis,  Paris) 

*  Lectures  delivered  at  the  first  International  Mathematical  Congress, 

Zurich,  1897;  reproduced  in  "La  Valeur  de  la  Sciences." 



LECTURE  II 

Contemporary    Researches    in    Differential    Equations, 

Integral  Equations,  and   Integro-Differential 

Equations 

1.  Partial  Differential  Equations  and,  Integral  Equations 

I  reminded  you  at  the  end  of  the  last  lecture  what  indispensable 

help  the  physicist  renders  to  the  mathematician  in  furnishing 

him  with  problems.  But  that  help  is  not  always  free  from 
inconveniences,  and  the  task  of  the  mathematician  is  often  a 

thankless  one.  Two  cases  generally  occur:  it  may  happen  that 

the  physical  problem  is  easily  soluble  by  a  mere  "rule  of  three" 
method,  but  if  not,  it  is  so  extremely  difficult  that  the  mathe- 

matician despairs  of  solving  it  at  all ;  and  he  will  strive  after 
that  solution  for  two  centuries  and,  when  he  obtains  it,  our 

interest  in  the  particular  physical  problem  may  have  been  lost. 

Such  seems  to  be  the  case  with  some  problems  concerning  partial 

differential  equations.  Just  after  the  discovery  of  infinitesimal 

calculus,  physicists  began  by  needing  only  very  simple  methods 

of  integration,  the  problems  in  general  reducing  to  elementary 

differential  equations.  But  when  higher  partial  differential 

equations  were  introduced,  the  corresponding  problems  almost 

immediately  proved  to  be  far  above  the  level  of  those  which 

contemporary  mathematics  could  treat. 

Indeed,  those  problems  (such  as  Dirichlet's)  exercised  the 
sagacity  of  geometricians  and  were  the  object  of  a  great  deal  of 

important  and  well-known  work  through  the  whole  of  the 
nineteenth  century.  The  very  variety  of  ingenious  methods 

applied  showed  that  the  question  did  not  cease  to  preserve  its 

rather  mysterious  character.  Only  in  the  last  years  of  the 

century  were  we  able  to  treat  it  with  some  clearness  and  under- 

12 
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stand  its  true  Dature.  This  clearness  seemed  to  come  too  late, 

for  at  that  time,  physics  began  its  present  evolution  in  which  it 

seems  to  disregard  partial  differential  equations  and  to  come 

back  to  ordinary  differential  equations,  but  of  course  in  prob- 
lems profoundly  different  from  the  simple  cases  which  were 

familiar  to  Bernoulli!  or  Euler. 

Happily,  for  it  would  have  been  a  humiliating  thing  to  work  so 
uselessly,  this  disregard  was  only  in  appearance,  and  the  ancient 

problems  have  not  lost  their  importance  by  the  fact  that  other 
ones  have  been  superposed  on  and  not  substituted  for  them. 

In  fact,  the  solution  now  obtained  for  Dirichlet's  problem  has 
proved  useful  in  several  recent  researches  of  physics. 

Let  us  therefore  inquire  by  what  device  this  new  view  of 

Dirichlet's  problem  and  similar  problems  was  obtained.  Its 
peculiar  and  most  remarkable  feature  consists  in  the  fact  that 

the  partial  differential  equation  is  put  aside  and  replaced  by  a 
new  sort  of  equation,  namely,  the  integral  equation.  This  new 

method  makes  the  matter  as  clear  as  it  was  formerly  obscure. 

In  many  circumstances  in  modern  analysis,  contrary  to  the 

usual  point  of  view,  the  operation  of  integration  proves  a  much 

simpler  one  than  the  operation  of  derivation.  An  example  of 
this  is  given  by  integral  equations  where  the  unknown  function 
is  written  under  such  signs  of  integration  and  not  of  differentia- 

tion. The  type  of  equation  which  is  thus  obtained  is  much 

easier  to  treat  than  the  partial  differential  equation. 

The  type  of  integral  equations  corresponding  to  the  plane 
Dirichlet  problem  is 

(1)  *(*)  —  Xjf  <S>{y)K{x,  y)dy  =  /(*) 

where  <£  is  the  unknown  function  of  x  in  the  interval  {A,  B),  f 
and  K  are  known  functions,  and  X  is  a  known  parameter.  The 

equations  of  the  elliptic  type  in  many-dimensional  space  give 
similar  integral  equations,  containing  however  multiple  integrals 
and  several  independent  variables.     Before  the  introduction  of 



14  SECOND   LECTURE 

equations  of  the  above  type,  each  step  in  the  study  of  elliptic 

partial  differential  equations  seemed  to  bring  with  it  new  diffi- 

culties; not  only  did  the  various  methods  imagined  for  Dirichlet's 
problem  not  cast  more  than  a  partial  light  on  the  question, 

but  the  principles  of  most  of  them  were  peculiar  to  that  special 

problem:  they  seemed  to  disappear  if  Laplace's  equation  was 
replaced  by  any  other  equation  of  the  same  type,  or  even  (except 

for  Neumann's  method,  which,  as  we  shall  soon  see,  is  directly 

related  to  integral  equations)  if  for  the  same  Laplace's  equa- 
tion Dirichlet's  problem  was  replaced  by  any  analogous  one 

such  as  presented  by  hydrodynamics  or  theory  of  heat.  Each 

of  them,  besides,  was  rather  a  proof  of  existence  than  a  method 
of  calculation. 

Then  they  seemed  again  quite  insufficient  for  another  series 

of  questions  which  mathematical  physics  had  to  solve,  viz.,  the 

study  of  harmonics.  The  existence  of  those  harmonics  (such  as 

the  different  kinds  of  resonance  of  a  room  filled  with  air)  was 

physically  evident,  but  for  the  mathematician  it  offers  an  im- 
mense difficulty.  Schwarz,  Picard  and  Poincare  gave  a  first 

solution  which  was  rather  complicated  as  each  harmonic  requires 

for  its  definition  a  new  infinite  process  of  calculation  after  the 

preceding  one  has  been  determined.  Nevertheless  it  has  demon- 

strated rigorously  the  chief  properties  of  the  quantities  in  ques- 
tion (namely,  certain  special  values  of  the  parameter  in  equation 

(1)),  i.  e.  that  they  exist  and  form  a  discrete  infinity,  only  a  finite 

number  of  them  lying  within  any  finite  interval. 

But  at  the  same  time  a  discovery  even  more  important,  in  a 

certain  sense,  was  made  by  Poincare,  namely  the  near  relation 

between  that  question  of  harmonics  and  the  method  which  had 

been  indicated  by  Neumann  for  Dirichlet's  problem.  This 

discove.y  of  Poincare  paved  the  way  for  Fredholm's  work.  The 
latter  treats  every  one  of  the  aforesaid  questions,  and  any 

which  can  be  assimilated  to  them,  by  one  and  the  same  method, 

which  consists  in  tire  reduction  to  an  equation  such  as  (1). 

This  gives  all  the  required  results  at  once  and  for  all  the  possible 

types  of  such  problems. 
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In  all  this,  the  mathematician  seems  to  play  again  the 

unfortunate  role  we  alluded  to  in  the  beginning;  for  those 
results  are  nothing  but  the  mathematical  demonstration  of  facts 

each  of  which  was  familiar  to  every  physicist  long  before  the 
beginning  of  all  those  researches.  But  of  course  their  interest 

is  not  in  fact  limited  in  demonstration;  they  can  and  do  serve 

as  starting  points  for  the  discovery  of  new  facts.  They  are 

useful  as  giving  the  proper  method  of  calculation.  Previously, 
in  the  calculation  of  the  resonance  of  a  room  filled  with  air, 

the  shape  of  the  resonator  had  to  be  quite  simple,  which  require- 
ment is  not  a  necessary  one  for  the  case  where  integral  equations 

are  employed.  We  need  only  make  the  elementary  calculation 
of  the  function  K  and  apply  to  the  function  so  calculated  the 

general  method  of  resolution  of  integral  equations. 

There  are  two  chief  methods  for  the  solution  of  the  equa- 
tions.    It  is  not  always  easy  to  get  numerical  results. 

Liouville  and  Neumann  (in  solving  Dirichlet's  problem) 
really  worked  out  a  method  of  solving  integral  equations.  A 
second  method  is  due  to  Fredholm.  The  first  method  leads  to 

series  which  may  converge  slowly  but  they  are  easy  to  calculate. 

The  method  of  Fredholm  gives  a  quotient  of  two  series  (entire 
functions  of  X)  the  terms  of  which  have  to  be  calculated  inde- 

pendently, while  in  the  first  method  each  is  obtained  from  the 

one  immediately  preceding  it.  While  we  must  add  that  Erhard 

Schmidt  has  shown  how  the  first  method  can  be  made  to  supply 

a  more  rapidly  convergent  series,  Fredholm's  method  is  of 
greater  value  to  physics  because  of  the  theoretical  point  of  view. 

It  gives  easily  (what  was  impossible  before  its  appearance)  not 

only  the  existence  of  harmonics,  but  their  properties.  For 
instance,  older  methods  could  not  have  succeeded,  at  least  not 

without  great  difficulties  and  a  large  amount  of  calculation,  in 

obtaining  the  order  of  magnitude  of  the  successive  upper  har- 
monics (i.  e.  the  corresponding  great  values  of  A).  They  would 

probably  have  been  quite  unable  to  predict  the  order  of  magni- 
tude, as  is  done  in  the  recent  works  of  Hermann  Weyl,  so  as  to 
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show  its  relation  the  volume  of  the  room  to  which  they 
correspond.  But  it  has  even  proved  of  great  importance  for 
physics  to  know  mathematically,  and  not  only  empirically,  that 
the  harmonics  corresponding  to  equations  of  the  form  (1)  are  a 
discrete  infinity.  For  in  the  case  of  the  spectral  frequencies  we 
get  series  which  tend  to  accumulate  towards  definite  positions. 

Since  Fredholm's  theory  we  can  assert  that  such  series  are  not 
compatible  with  the  form  of  integral  equation  given  at  the 
beginning  of  this  lecture. 

Fredholm  himself  investigated  new  forms  (as  also  did  Walther 
Ritz).  The  introduction  of  the  integral  equation  has  made  even 
the  above  problem  accessible.  The  older  method  would  not  have 

been  able  to  decide  whether  the  distribution  in  question  was  pos- 
sible or  not.  The  hypothesis  proposed  by  Fredholm  leads  to  an 

integral  equation  such  as 

*<*>  ~  kZTtf£<Kv)K(*>y)dy  -/(*) (2) 
Here  the  frequencies  will  accumulate  in  the  neighborhood  of 

I  must  immediately  add  that,  as  Ritz  showed,  Fredholm's  type 
is  not  sufficient  to  give  a  correct  explanation  of  the  phenomena. 
But  this  does  not  change  the  essential  fact  that  by  the  aid  of  the 

new  method  we  are  immediately  able  to  decide  what  the  asymp- 
totic distribution  of  harmonics  can  or  cannot  be,  so  that  com- 

parison with  observation  becomes  possible;  and  this  we  owe 

entirely  to  Fredholm's  method. 

2.  Coming  Back  to  Ordinary  Differential  Equations 

As  we  said  in  the  beginning,  the  subject  of  partial  differential 
equations  which  was  the  main  and  almost  the  only  occupation 

of  mathematical  physics,  ceases  nowadays  to  be  so.  As  a  con- 
sequence of  the  general  admission  of  the  discrete  structure  of 

matter,  physical  problems  tend  now  to  lead  to  ordinary  differ- 
ential equations.     These  differential  equations  are  to  be  studied 
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under  the  most  difficult  circumstances  because  we  must  follow 

the  form  of  the  solutions  for  very  long  periods  of  time,  that  is, 

of  the  independent  variable  t.  One  can  say  that  such  a  study 

did  not  exist  before  Poincare,  and  even  his  researches  on  the 

subject,  I  mean  especially  his  four  chief  memoirs  in  the  "  Journal 

de  Mathematiques,"  1887  {On  the  shape  of  Curves  Defined  by 
Differential  Equations),  lead  us,  like  Socrates,  to  begin  to  feel 
that  we  know  nothing. 

We  cannot,  in  this  place,  lay  stress  on  the  extraordinary  com- 
plications and  paradoxes  which  he  discovered.  We  shall  mention 

only  one  of  them,  because  it  helps  to  correct  an  error  frequently 

committed  in  hydrodynamical  and  electrical  problems,  concern- 
ing the  lines  of  force  and  the  lines  of  flow.  These  lines  are  all 

defined  by  ordinary  differential  equations.  The  general  form 

is  dx/X  =  dy/Y  =  dz/Z.  In  a  very  general  category  of  cases 
the  vector  XYZ  has  the  property  that 

div  {XYZ)^{~ 
6X      dY      dZ\ 

dx  +  dy+  dz) 

Now,  whenever  such  conditions  existed,  physicists  used  to  say 

that  the  tubes  of  force — or  tubes  of  flow,  or  tubes  of  vortices — 
were  closed  (if  they  did  not  go  to  infinity  or  come  to  the 

boundaries  of  the  domain  of  existence  of  the  vector  X,  Y,  Z). 

They  were,  I  think,  led  to  say  so  by  the  examples  given  by 

some  simple  peculiar  cases  in  which  the  differential  equations 

could  be  integrated,  for  one  could  not  suspect  before  Poin- 

care's  work  that  such  cases  are  exceptional,  generally  giving 
a  quite  inadequate  and  deformed  view  of  things.  In  fact,  the 

assertion  in  question  is  an  utterly  false  one.1  If  you  allow  me 
such  a  crude  comparison,  it  is  not  true  that  the  tube  of  force 

must  get  back  home  and  put  its  key  in  the  lock.  Rather  does 

it  put  its  key  above  and  below  and  on  either  side,  and  never 

succeeds  in  getting  it  in  exactly.     It  will,  it  is  true,  nearly  get 

1  A  demonstration  is  frequently  given  to  justify  it,  the  error  of  which 
consists  in  an  incomplete  enumeration  of  possible  cases. 
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back  an  infinite  number  of  times.  The  only  consequence  which 

can  be  correctly  drawn  from  the  equation  div(ATZ)  =  0  is 
that  the  area  of  the  cross  section  of  the  tube  cannot  have  changed. 

But  its  shape  may,  and  generally  will,  have  done  so.  If  it  were, 

let  us  say,  circular  in  starting,  it  will  have  become  elliptic  when 

coming  back  and  its  ellipticity  will  increase  at  each  return. 

Finally  it  will  become  a  long  flat  strip  and  only  a  part  of  it  will 
come  back  to  the  neighborhood  of  its  original  position.  In  Fig. 

1,  the  successive  appearances  of  the  same  tube  of  force  are  shown. 

A 

Via.  1 

The  tube  of  force  may  have  been  originally  circular,  but  on  its 

first  recurrence  or  return,  it  may  have  become  elliptic  in  cross 

section  and  thus  it  has  only  partly  returned  to  its  original 

position.  Still  more  is  this  the  case  in  the  second  recurrence  of 

the  tube  of  force,  which  may  be  assumed  by  this  time  to  have 

become  very  flat  in  cross  section. 

As  Mr.  Birkhoff  kindly  pointed  out  to  me,  it  is  interesting 
to  remark  that  in  most  cases,  the  deformed  and  flattened  tube 

will  even  pass  simultaneously  indefinitely  near  to  any  point  of 
the  considered  medium. 

A  rather  curious  fact  must  nevertheless  be  stated.  Although 

the  principle  that  the  tube  is  closed  is  completely  false,  the 
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conclusions  drawn  from  it  by  physicists  are  most  often  true. 

Why  is  this  so?  Perhaps  the  explanation  lies  in  the  fact  that 

under  that  same  hypothesis,  div  (X,  Y,  Z)  =  0,  a  line  defined 
by  our  differential  equations  generally  returns  indefinitely  near 

and  an  infinite  number  of  times  to  its  starting  point.  (This  is 

called  "  Stabilite  a  la  Poisson.")  Poincare  has  shown  that  though 
not  every  line  in  question  necessarily  does  this,  the  fact  occurs 

for  an  infinitely  greater  number  of  cases  than  those  in  which  it 
does  not  occur. 

3.  Application  to  Molecular  Physics 

We  see  by  this  single  example  how  complicated  and  unexpected 

the  shapes  of  curves  defined  by  differential  equations  may  be, 
and  how  far  we  are  from  understanding  them  when  considered 

for  great  values  of  the  independent  variable. 
But  could  we  be  satisfied  with  our  work  if  we  succeeded  in 

doing  so?  This  even  is  doubtful.  I  cannot  help  thinking  of 

a  bequest  left  to  the  French  Academy  of  Science  for  a  prize  to 

the  first  person  who  should  be  able  to  communicate  with  a 

planet  other  than  Mars!  The  case  of  molecular  physics  reminds 

me  of  that  rather  difficult  requirement.  The  discussion  of  the 

molar  effects  (i.  e.  the  effects  on  quantities  of  matter  accessible 
to  observation)  of  molecular  movements  is  a  mathematical 

problem,  which,  logically  speaking,  would  presuppose  a  rather 
advanced  knowledge  of  curves  defined  by  differential  equations, 

and  take  this  as  a  starting  point,  in  order  to  discuss  the  questions 

of  probability  connected  with  such  curves. 

That  probability  plays  its  role  in  the  movements  of  almost  any 

dynamical  system,  follows  from  the  statements  we  just  quoted. 

If  the  initial  positions  and  the  initial  speeds  of  the  moving  points 

are  exactly  given,  so  will  be  the  final  positions  and  speeds  after 

any  (however  long)  given  period  of  time.  But  if  this  period  is 

long,  and  if  we  make  a  very  small  error  in  the  initial  conditions, 
the  small  error  will  have  a  much  magnified  effect  and  even  cause 

a  total  change  in  the  results  at  the  end  of  the  long  period  of 

time,  and  this  is  precisely   Poincare's  conception  of  hazard. 
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It  is  like  a  roulette  game  at  Monte  Carlo  where  we  do  not  know 
all  the  conditions  of  launching  the  ball  which  induces  the  hazard. 

And  so  we  know  nothing  more  about  the  conditions  than  the 

gamblers.  In  other  words,  molecules  are  finally  mixed  just  as 

cards  after  much  shuffling.  It  is  this  fundamental  hazard  which 

plays  the  main  part  in  Gibbs's  method.  A  sort  of  mixing  func- 
tion ought  to  be  introduced.  Let  us  start  on  one  of  the  lines  of 

force.  If  we  know  exactly  the  point  of  departure  A  we  should 

know  accurately  the  point  of  arrival.  If  A  is  but  approximately 

known,  that  point  of  arrival  may  occupy  all  sorts  of  positions; 

and  indeed,  in  many  differential  problems,  it  may  coincide 

(approximately)  with  any  point  B  within  the  domain  where  the 
differential  system  is  considered  (though  this  is  not  exactly  so 

for  dynamical  problems  on  account  of  the  energy  integral  or 

other  uniform  integrals  which  the  equations  may  admit). 

Therefore,  the  starting  point  being  approximately  A,  there 

will  be  a  certain  probability  that  the  point  of  arrival  will  be  in  a 

certain  neighborhood  of  another  given  point  B;  and  that  prob- 
ability will  be  a  certain  function  of  the  positions  of  the  two 

points  A,  B. 
Now,  logically  speaking,  in  order  to  solve  the  question  set 

for  us  by  kinetic  theories,  we  ought  to  take  such  a  "mixing 
function,"  assuming  it  to  be  known,  as  a  base  for  further  and 
perhaps  complicated  reasoning.  In  fact,  the  main  present 
theories  in  statistical  mechanics  rest  on  certain  assumptions 

concerning  that  function,  which  are  very  plausible.  But,  rigor- 
ously speaking,  we  are  not  able  to  consider  them  as  theorems. 

Happily,  things  are  greatly  simplified  by  the  fact  that  in  such 
mixings  the  aforesaid  function,  characteristic  of  the  law  of 

mixing,  only  intervenes  by  some  of  its  properties  and  may  be 

changed  to  a  large  extent  without  changing  the  final  result. 
This  is  what  Poincare  showed  for  the  ordinary  shuffling  of  cards 

in  his  "Calcul  des  Probabilities  "  (second  edition).  In  one 
shuffling  the  peculiar  habits  of  the  player  certainly  intervene 

and  so  do  they  more  or  less  after  only  a  few  shufflings.     But 
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after  many  shufflings  the  results  become  totally  independent  of 

those  habits.  Poincare  also  shows  (though  with  some  excep- 
tions which  do  not  however  seem  to  play  a  great  practical  role), 

that  such  is  likewise  the  case  in  the  kind  of  mixing  introduced  by 
molecular  theories. 

Some  known  facts  in  the  history  of  these  theories  give  a 
striking  instance  of  this.  Such  is  the  work  of  Boltzmann  and 

Gibbs  in  the  treatment  of  the  kinetic  theory  of  gases  and 

statistical  mechanics.  They  both  obtained  the  result  that  if 

we  consider  the  probability  of  the  average  number  of  mole- 

cules in  6-dimensionaI  space  and  call  it  P,  and  integrate  log  P 
over  the  whole  mass,  the  conclusion  drawn  will  be  that  the 

integral  obtained  is  constantly  increasing.  Critics,  and  among 

them  my  colleague  and  friend  Brillouin,  say:  "We  have  not 
to  congratidate  ourselves  on  the  result,  because  the  two  speak 

of  quite  different  things  and  yet  they  agree.  Gibbs  does  not 

mention  the  collision  of  molecules,  while  Boltzmann's  analysis 
is  founded  on  the  collisions  of  molecules.  The  primitive  order 

of  the  molecules  is  disturbed  by  such  collisions  and  a  mixing  is 

produced.  Gibbs  gets  a  similar  mixing  by  the  mere  considera- 

tion of  differential  equations  existing  over  long  periods  of  time." 

In  both  cases,  if  we  consider  systems  which  are  "molecularly 

organized,"  after  a  certain  time  the  molecules  will  be  so  much 
less  organized  and  more  mixed  up. 

We  are  surprised  to  find  this  coincidence  of  the  results  of 

Gibbs  and  of  Boltzmann  in  such  circumstances.  We  shall,  how- 

ever, cease  to  consider  it  as  fortuitous  and  perceive  its  true 

signification  by  precisely  what  we  just  remarked  on  the  shuffling 

of  cards,  which  makes  us  understand  that  such  final  results  may 

and  do  depend  on  properties  which  are,  in  general,  common  to 
utterly  various  laws  of  mixing. 

But  the  difficulties  met  with  in  partial  or  ordinary  differential 
equations  are  not  the  only  ones  which  we  had  to  consider  at  the 

present  time.  The  mathematicians  have  contrived  to  introduce 

a  new  sort  of  equation,  more  difficult  than  the  previous  ones,  the 

integro-differential  equation. 
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4.  Integro-diffcrential  Equations 
We  are  now  forced  to  consider  this  new  form.  Here  the  unknown 

function  simultaneously  appears  in  integrals  and  in  differentials. 

We  have  at  least  two  completely  different  cases  of  such  equations 

to  consider.  Their  difference  corresponds  to  the  two  sorts  of 

variables  which  intervene  in  all  physical  problems,  the  space 

variables  x,  y,  z,  and  the  time  variable  t.  (There  may  be  more 
than  three  variables  in  the  first  group.) 

Type  1:  Differentiation  with  respect  to  x,  y,  z;  integration 

relative  to  t.  Type  2:  Differentiation  with  respect  to  t;  integra- 
tion relative  to  x,  y,  z.  And  even  though  this  type  dates  only 

from  1907,  we  have  already  found  cases  of  both  kinds. 
Volterra  was  led  to  consider  the  first  one  in  connection  with 

"The  Mechanics  of  Heredity."  This  is  the  case  where  the 
properties  of  the  system  depend  on  all  the  previous  facts  of  its 

existence  (such  as  magnetic  hysteresis,  strains  of  glass,  and 

permanent  deformations  in  general). 
Volterra  considers  elastic  hysteresis.  Let  T  be  any  component 

of  strains;  E  the  component  of  deformation.  (There  are  six  7"s 
and  six  E's.)  Then  formerly  we  considered  Thk=  2ahkEkk.  There 

are  6  equations  of  this  type.  There  are  21,  36,  6  or  2  a's  depend- 
ing on  the  theories.  If  we  consider  heredity,  we  must  introduce 

new  terms.     Suppose  that  at  the  time  0  there  were  mo  strains ;  then 

Thk  =  2aEhk  +   I      (2aE)tdr  where  t  is  the  variable  time.     This 

Jo 

is  an  equation  in  which  we  have  derivatives  with  respect  io  x, 

y,  z,  and  an  integral  with  respect  to  the  time;  and  the  same 

character  subsists  if,  from  those  values  of  the  T's,  we  deduce 
the  equations  of  movement.  Water  waves  furnish  us  with  an 

instance  of  the  opposite  type.  One  knows  that  waves  on  the 
surface  of  water  are  the  most  common  example  of  an  undulatory 

phenomenon  and  that,  for  this  reason,  they  are  most  frequently 

used  to  give  to  the  beginner  a  first  idea  of  what  such  phenomena 
are. 

But  it  is  a  general,  though  astonishing  fact,  that  the  most 
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simple  of  daily  phenomena  are  the  most  difficult  to  understand. 

While  the  theory  of  aerial  or  even  elastic  waves  is  rather  simple, 

at  least  as  long  as  viscosity  is  left  aside,1  and  now  classically 
reduced  to  analytical  principles  (related  to  notion  of  characteris- 

tics as  we  saw  in  the  preceding  lecture),  the  properties  of  surface 

waves  in  liquids  are  much  more  hidden.  The  few  results  clas- 

sically known  on  that  subject  are  even  of  a  contradictory  nature. 

One  of  them  is  the  differential  equation  given  by  Lagrange  in 

the  case  of  small  (and  constant)  depth,  which  has  served  as  a 

model  for  the  dynamical  theory  of  tides,  the  equation  obtained 

as  governing  the  phenomenon  being  in  both  cases  a  partial 
differential  equation  of  the  second  order.  But,  for  the  same 

phenomenon  on  a  liquid  of  indefinite  depth,  Cauchy  gets  a 
partial  equation  of  the  fourth  order.  The  truth  is  that  the 

problem  does  not  lead  to  a  differential  equation  at  all,  but  to 

an  integro-differential  equation.  Fof  an  originally  plane  surface 
with  small  displacements,  where  z  is  the  vertical  displacement 

at  (x,  y),  then 

^  =  f  f  Z^(P,  Q)dSQ 
Thus,  for  any  determinate  point  P  of  the  surface  defined  by  its 

coordinates,  (z,  y),  the  vertical  acceleration  depends  on  the 

values  of  z  in  every  other  point  Q(x',  y').  Here  SQ  is  dx'dy' 
and  <f>  is  a  known  function  of  (x,  y,  x',  y').  The  above  equation 
is  of  the  second  form  of  integro-differential  equations. 

Volterra  succeeded  in  the  case  of  isotropic  bodies  in  reducing 

the  problem  to  the  solution  of  a  partial  differential  equation  and 

an  ordinary  integral  equation.  But  things  are  not  so  simple 

for  crystalline  media.2 

1  In  a  viscous  gas,  waves  cannot  exist,  strictly  speaking.  They  are  replaced 
by  quasi-waves  which  were  first  considered  by  Duhem,  and  more  profoundly 
studied  in  an  important  memoir  presented  by  Roy  to  the  French  Academy 
of  Sciences. 

'Since  these  lectures  were  delivered,  Professor  Volterra  has  given  a  com- 
prehensive view  of  his  methods  and  solutions  in  a  course  of  lectures  at  the 

University  of  Paris.  See  the  issue  of  those  lectures  by  J  Peres  (Paris,  Gauthier 
Villars). 
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The  two  types  of  integro-differential  equations,  which  we 
just  enumerated,  are  completely  different  in  their  treatment. 

Volterra's  type  resembles  the  partial  differential  equations  (of 
the  elliptic  or  sometimes  parabolic  genus  in  the  examples  hitherto 

given).  The  equation  must  be  completed  by  accessory  condi- 
tions which  are  nothing  else  than  boundary  conditions  (cf. 

Lecture  I).  The  methods  given  by  Volterra  run  exactly  parallel 

to  those  which  are  applied  for  Dirichlet's  problem  (such  as  the 

formation  of  Green's  functions). 
In  the  second  type  described  above,  the  accessory  condi- 

tions are  initial  ones;  and  are  to  be  treated  in  the  manner,  not 

of  partial,  but  of  ordinary  differential  equations — such  methods 

as  Picard's  successive  approximations  being  of  great  use  in  that 
case. 



LECTURE  III      • 

Analysis  Situs  in  Connection  with  Correspondences  and 

Differential  Equations 

1. 

We  are  going  to  speak  of  the  role  of  analysis  situs  in  our 

modern  mathematics.  This  theory  is  also  called  the  geometry  of 

situation.  It  is  the  study  of  connections  between  different  parts 

of  geometrical  configurations  which  are  not  altered  by  any  con- 
tinuous deformation.  We  suppose  that  we  can  let  a  system 

undergo  any  deformation  whatever,  however  arbitrary  it  may  be, 

only  that  it  preserves  continuity.  For  instance,  a  sphere  and  a 

cube  are  considered  as  one  and  the  same  thing  from  the  point 

of  view  of  the  geometry  of  situation,  because  one  can  be  trans- 

formed into  the  other  without  separating  parts,  or  uniting  paits 
which  formerly  were  separated.  The  circle  and  the  rectangle 
are  identical  from  the  same  point  of  view.  But  the  lateral 

surface  of  a  cylinder  and  the  surface  of  a  rectangle  are  not 

identical,  because,  for  the  transformation  of  one  into  the  other, 

we  must  make  a  cut  along  a  generatrix.  Also  one  is  limited  by 

two  lines  (the  base  circles)  while  the  other  is  limited  by  one. 
The  total  surface  of  a  cylinder  is  entirely  closed;  it  is  identical 

with  the  surface  of  a  sphere.  There  is  no  difficulty  in  the 
transformation. 

If  we  consider  the  "anchor  ring,"  the  case  is  different. 
This  is  a  closed  surface  but  it  has  a  hole  which  is  not  found 

in  the  surface  of  the  sphere,  and  the  surface  of  the  sphere  can- 
not be  transformed  continuously  in  it.  It  would  have  to  be 

transformed  by  several  cuts,  the  first  of  them  (Fig.  2)  giving  a 
broken  ring,  which  for  us  is  identical  with  the  lateral  surface  of 

a  cylinder.     This  may  be  cut  into  a  rectangle  and  then  trans- 25 
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formed  into  a  sphere.  But  the  transformation  of  an  anchor 
ring  into  a  sphere  cannot  be  done  without  cutting  and  piecing. 
The  principles  of  analysis  situs,  for  surfaces  in  ordinary  space, 

Fig.  2. 

are  well  known  and  I  do  not  intend  to  go  over  them  at  this  mo- 
ment.    We  shall  take  them  for  granted.     According  to  them, 

Fia.  3. 

a  surface  of  two  dimensions  is  defined  from  our  present  point  of 
view  by  the  number  of  boundaries  and  another  number,  namely 
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the  genus.  The  genus  is  zero  for  the  sphere  and  one  for  the 

anchor  ring.  For  a  pot  with  two  "ears"  (Fig.  3)  we  have  the 
genus  two. 

Analysis  situs  started  with  trifling  problems,  such  as  that 

treated  by  Euler  of  the  bridges  of  Konigsberg  over  the  Pregel 

river.  There  are  seven  bridges;  the  problem  is  to  go  over  all 

of  them  without  passing  twice  over  any  one  (Fig.  4).     The  great 

Fia.  4. 

Euler  did  not  disdain  to  occupy  himself  with  this  and  many 

other  apparently  childish  problems.  But  what  interests  us  in 

this  one  especially  is  that  it  involves  the  geometry  of  situation, 
in  the  sense  in  which  we  have  used  the  term.  For  even  if  the 

islands  in  the  river  had  other  shapes  and  the  bridges  had  the 

queerest  forms,  the  reasoning  would  be  exactly  the  same,  pro- 
vided the  numbers  of  islands  and  bridges  should  not  change,  and 

each  bridge  should  join  the  same  islands  in  both  cases. 

We  have  here  an  example  of  an  important  theory  which 
develops  from  a  childish  exercise.  Some  would  think  that  it  was 

a  disadvantage  to  mathematics  that  we  should  occupy  ourselves 

with  such  problems.  The  fact  is,  as  we  see,  that  they  may, 
though  exceptionally,  lead  to  valuable  results. 

That  this  notion  of  analysis  situs  was  really  an  important  one, 
appears  first  from  the  researches  of  Itiemann.  You  know  that 

Riemann  was  the  fellow  founder  with  Cauchy  of  the  modern 

theory  of  analytic  functions.     These  two  schools  applied  their 
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theories  to  the  study  of  algebraic  functions.  Cauchy's  methods, 
in  the  hands  of  their  author  and  of  Puiseux,  were  capable  of 

casting  light  on  some  important  parts  of  the  problem, "but  did 
not  however  completely  elucidate  it,  and  (in  particular)  Riemann 

alone  could  discover  the  fundamental  notion  of  the  genus  of  an 
algebraic  curve. 

What  were  the  elements  of  Riemann's  success  and  superiority 
over  Cauchy?  A  remark  must  first  be  made  which  perhaps, 

strictly  speaking,  would  not  be  within  our  subject,  but  which 

is  nevertheless,  as  we  shall  see,  most  closely  and  necessarily 
connected  with  it. 

Let  us  consider  the  real  domain.  Suppose  that  we  have  to 

study  the  algebraic  function  y  defined  by  x2  +  y2  =  1  (or  any 
quadratic  equation  defining  y  as  a  function  of  x  corresponding  to 

an  ellipse).     This  function  is  real  only  for  values  of  x  which  are 

Fig.  5. 

comprised  between  —  1  and  -f-  1  (in  the  second  case,  for  values 
between  x0  and  Xi).  Riemann  considered  the  function  in  the  seg- 

ment comprised  between  these  values.  He  remarked  that  this 

is  an  incomplete  view  of  the  equation,  for  y  is  not  well  defined, 
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because  it  has  two  different  values.  But  if  we  change  our  straight 

line  into  two  slightly  different  straight  lines,  then  we  may  admit 

that  tHfe  superior  segment  corresponds  to  the  +  value  of  y, 

and  the  inferior  one  to  the  —  value,  the  two  segments  being 
supposed  to  join  each  other  at  their  common  ends.  To  each 

point  of  the  drawing,  after  that  modification,  one  and  only  one 

system  of  values  of  x  and  y  verifying  the  given  equation  will 

correspond.  Besides,  in  that  case,  we  obtain  a  figure  which 

from  the  point  of  view  of  analysis  situs,  is  identical  with  the 

ellipse  represented  by  the  given  equation  itself. 
But  Riemann  applied  that  same  method  in  the  complex 

domain,  and  was  led  to  the  celebrated  kind  of  representing  sur- 
faces which  bear  his  name. 

This  principle  is  a  very  general  one.  It  must  be  applied,  in 

any  case,  before  using  the  geometry  of  situation.  We  must 

inquire  whether  the  domain  used  is  adequate  to  represent  the 

states  of  variation  to  be  studied.  I  shall  give  an  instance  which 

I  think  is  due  to  Sophus  Lie.  It  is  concerned  with  the  singular 

solution  of  differential  equations  of  the  first  order.  Given  the 

differential  equation 

f(x,  y,  y')  =  0  (1) 
the  question,  as  well  known,  is  whether  some  solution  exists  which 

is  not  represented  in  the  general  integral.  In  that  case  such  a 

solution  must  verify  not  only  the  original  equation,  but  also 

I"0  <2> 
Darboux  showed  that  this  was  not  sufficient,  and  that,  in  general, 

the  system  of  equations  (1)  and  (2)  does  not  represent  an  actual 
solution,  but  that  the  curve  which  it  defines  is  the  locus  of  the 

cusps  of  the  solutions  of  equation  (1)  (Fig.  5).  We  now  shall 
see  that  this  result,  the  analytical  proof  of  which  requires  some 

complicated  calculations,  appears  of  itself  by  the  above  geo- 
metric considerations. 

Equation  (1)  defines  y'  as  a  function  of  x  and  y,  but  this  func- 
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tion  has  several  determinations  or  branches.  This  state  of  things 

is  not  satisfactory  from  our  point  of  view  above.  In  order  to 

avoid  this,  let  us  consider  the  surface  f(x,  y,  z)  =  0  in  space.  For 
each  point  of  that  surface,  we  have 

dyjdx  =  z  (3) 

Fia.  6. 

So  that  the  problem  becomes  to  trace  on  the  suiface,  those  curves 

which  have  dyjdx  equal  to  z.  Geometrically  speaking,  such 

curves  must,  in  each  point,  be  tangent  to  a  certain  direction,  viz. 

the  intersection  of  the  tangent  plane  to  the  surface  with  a  certain 

vertical  plane    (represented   by  (3)).     The  system  (1)  and  (2) 
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represents  the  "horizontal  boundary"  of  the  surface.  At  each 
point  m  on  it,  the  tangent  plane  is  vertical  (Fig.  6).  What 

happens  there?  We  see  that  in  m,  the  two  planes  which  define 

the  tangent  to  our  curve  are  vertical  (the  plane  corresponding  to 

(3)  being  so  in  any  case).  Therefore,  this  tangent  itself  is  also 

vertical.  This  gives  immediately  the  desired  result;  for  it  is 

well  known  that  by  projecting  a  space  curve  on  a  plane  perpen- 
dicular to  one  of  its  tangents,  we  obtain  a  projection  curve  which 

has  a  cusp.  The  only  exception  would  be  when  our  two  planes 

would  coincide  and  this  indeed  gives  the  supplementary  con- 
dition for  the  existence  of  a  singular  solution. 

A  difficult  question  in  differential  equations  is  thus  recon- 
ducted to  an  elementary  result  of  analytical  geometry;  and  this 

is  obtained  by  the  mere  fact  of  depicting  correctly  (in  the  sense 

of  Riemann)  y'  as  a  function  of  x  and  y.  Only  when  this  ade- 
quate representation  of  the  domain  of  variation  is  obtained, 

analysis  situs  is  to  be  applied. 

Before  seeing  it  in  operation,  let  us  notice  that  Cauchyhad  an 

opportunity  of  discovering  its  importance.  This  is  a  curious 
historical  fact  in  his  work;  for  it  was  one  of  his  few  errors. 

It  was  done  in  his  youthful  period,  when  dealing  with  the  theorem 

of  Euler  on  polyhedrons.  This  theorem  connects  the  number  of 

faces,  summits  and  edges.  It  expresses  that  F  -f-  V  =  E  -f-  2, 
where  F  is  the  number  of  faces,  V  is  the  number  of  vertices,  and 

E  the  number  of  edges.  Cauchy's  demonstration  was  false, 
and  so  is  even  the  theorem  itself.  This  theorem  holds  effectively 

(and  this  is  the  reason  why  Euler  and  Cauchy  believed  it  to  be 

true)  for  a  very  large  category  of  polyhedra,  among  which  every 
convex  one  occurs.  But  others  had  been  overlooked,  such  as 

those  which  have  the  general  shape  of  an  anchor  ring,  and  these 

do  not  verify  the  above  relation.  If  Cauchy  had  perceived 

that  error;  if  he  had  noticed  that  exception  to  Euler's  theorem, 
it  may  be  presumed  with  some  probability  that  he  would  not 
have  left  to  Riemann  the  glory  of  founding  a  complete  theory 

of  algebraic  functions. 



32  THIRD   LECTURE 

Let  me  remind  you  of  the  difference  between  the  method  of 

Cauchy  (and  of  Puiseux)  and  that  of  Riemann.  If  we  consider 

the  algebraic  function  defined  by  F(x,  y)  =  0,  then  y,  in  general, 
in  the  environs  of  x0  and  yo,  is  a  regular  analytic  function  of  x 

and  is  given  by  a* Taylor's  series  within  a  certain  circle  around  x0. 
Inside  this  circle,  the  principles  of  Cauchy  and  Weierstrass 

permit  us  to  study  the  function.  At  critical  points  Xi,  where 

y  is  not  a  holomorphic  function  of  x,  Puiseux  studied  this. 

He  took  X  =  (x  —  ari)1/p,  p  being  properly  chosen.  Then  y  can 

be  developed  in  powers  of  X  instead  of  in  terms  of  x  —  X\. 
Everything  seems  at  first  to  be  settled  then.  But  really  we  still 

ignore  some  fundamental  properties.  The  reason  of  this  is  that 

we  do  not  get  the  direct  idea  of  the  total  domain,  but  only  an 

indirect  idea  of  it  by  a  series  of  smaller  regions. 

It  is  true  that  these  smaller  regions  are  such  that,  taken  alto- 
gether, they  cover  the  totality  of  the  domain  in  question,  and 

for  that  reason,  they  finally  may  enable  us  to  master  it  com- 
pletely. But  the  error  was  to  believe  that  this  could  be  without 

a  special  study  of  the  manner  in  which  those  partial  regions 
are  united. 

I  should  compare  this  (though  the  comparison  is  very  in- 
complete) to  the  map  of  a  large  country,  which  is  given  by  a 

series  of  partial  leaves.  We  must  take  account,  not  only  of 

each  separate  leaf,  but  of  the  "assembling  table"  showing  their 
general  disposition,  so  as  to  pass  from  the  detail  to  the  whole. 

The  capital  and  unexpected  fact,  the  discovery  of  which  belongs 

to  Riemann,  is  that  such  "assembling  tables"  are  not  at  all 
like  each  other;  that  there  are  several  quite  different  kinds  of 

them :  therefore,  the  synthesis  of  the  details  of  the  solution  cannot 

be  well  understood  without  noticing  these  differences. 

2. 

It  is  now  evident  that  the  importance  of  these  considerations 

is  not  limited  to  algebraic  functions.  They  are  connected  with 

every  synthesis  of  the  above  mentioned  kind,  that  is  to  say, 
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theoretically  speaking,  with  every  employment  of  integral 
calculus. 

They  constitute  a  sort  of  revenge  of  geometry  on  analysis. 

Since  Descartes,  we  have  been  accustomed  to  replace  each  geo- 
metric relation  by  a  corresponding  relation  between  numbers, 

and  this  has  created  a  sort  of  predominance  of  analysis.  Many 

mathematicians  fancy  they  escape  that  predominance  and  consider 

themselves  as  pure  geometers  in  opposition  to  analysis;  but  most 

of  them  do  so  in  a  sense  I  cannot  approve:  they  simply  restrict 

themselves  to  treating  exclusively  by  geometry  questions  which 

other  geometers  would  treat,  in  general  quite  easily,  by  analytical 

means;  they  are  of  course,  very  frequently  forced  to  choose 

their  questions  not  according  to  their  true  scientific  interest, 
but  on  account  of  the  possibility  of  such  a  treatment  without 

intervention  of  analysis.  I  am  even  obliged  to  add  that  some 

of  them  have  dealt  with  problems  totally  lacking  any  interest 

whatever,  this  total  lack  of  interest  being  the  sole  reason 

why  such  problems  have  been  left  aside  by  analysts.  Of  course, 

I  not  only  admit  geometrical  treatment,  but  use  it  every  time 

I  find  it  possible,  for,  if  applicable  at  all,  it  gives  us,  in  general,  a 
much  better  view  of  the  subject  than  an  analytical  one.  But 

very  important  problems  may  be  inaccessible  to  it.  We  must 
use  all  means  at  our  disposal  and  choose,  not  this  or  that  one 

a  priori,  but  the  one  best  adapted  to  our  question. 

But  here  geometry  has  over  analysis  a  more  certain  ad- 
vantage. I  consider  that  analysis  could  not,  or  could  only 

with  great  difficulty,  and  probably  after  a  long  series  of  sterile 

efforts,  have  replaced  the  geometrical  views  we  have  just  alluded 

to  for  resolving  the  corresponding  part  of  the  problem.  I  mean 

that  passage  from  the  solution  in  small  regions  to  the  solution 

over  the  whole  domain.1 

1  Logically  speaking,  even  the  results  of  analysis  situs  can  be  rigorously 
stated  in  numerical  language;  but  such  statements  have  been  made  only 
after  the  results  have  been  found,  and  some  parts  of  this  analytic  treatment 

are  of  extreme  difficulty  (such  as  Jordan's  theorem). 
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Let  us,  for  instance,  admit  that  that  domain  is  a  two-dimen- 
sional one.  Then  according  to  analytical  methods,  we  ought  to 

individualize  any  point  of  it  by  giving  the  values  of  two  param- 
eters, x  and  y.  But  the  representation  of  a  geometrical 

problem  by  means  of  functions  of  x  and  y  often  makes  us  lose 

some  element  of  the  problem:  functions  in  a  domain  in  two 

dimensions  may  be  something  else  than  the  functions  of  x 

and  y.  The  simultaneous  variation  of  x  and  y  represents  a 

plane.  Now  a  plane  has  not  the  same  general  shape  as  a  sphere 

or  anchor  ring,  and  those  differences  are  lost  in  Descartes's 
method.  We  can  have,  for  instance,  as  many  examples  of  this 

difference  in  rational  dynamics  as  we  please.  One  knows  that 

when  a  dynamical  problem  has  two  degrees  of  freedom  the  corre- 
sponding differential  equations,  i.  e.  the  equations  of  Lagrange, 

are  defined,  the  parameters  which  define  the  position  of  the 

system  being  designated  by  x  and  y,  if  one  gives  the  expres- 

sion 2T  =  E(x,  y)x'2  4-  2F(x,  y)x'y'  +  G(x,  y)y'2  for  the  vis  viva 
and  the  expression  U  =  <p(x,  y)  for  the  force  function.  There- 

fore, if  two  problems  of  dynamics  correspond  to  the  same  ex- 
pression of  T  and  the  same  expression  of  U,  their  studies  ought 

to  be  exactly  identical  and  reducible  to  each  other.  That  mat- 
ters may  really  be  quite  different  is  to  be  immediately  seen 

by  the  following  example: 

(1)  Consider  the  material  particle  acted  on  by  no  forces. 

The  trajectories  will  be  straight  lines.  (2)  Let  us  have  a  vertical 

standard.  The  arms  AA'  and  BB'  are  solidly  attached  and 
A  and  B  are  fixed  (Fig.  7).  The  only  motion  of  the  system  is 

a  rotation  about  AB.  A'B'  is  a  second  axis  about  which  a  rigid 
body  homogeneous  and  of  revolution  can  rotate.  The  system 

has  two  degrees  of  freedom.  We  have  to  study  the  motion  of  the 

system.  There  will  be  no  force  function.  Only  rotations  are 

possible  (two  independent  ones  around  AB  and  one  around  A'B'). 
Analytically,  the  two  problems  are  one  and  the  same,  for  in 

both  cases,  U  =  0  and  the  coefficients  E,  F,  0  in  2  T  are  constants 
(which  can  always,  by  a  linear  transformation  on  x,  y,  be  reduced 
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to  E  =  G  =  1,  F  =  0).  Nevertheless,  there  is  evidently  no 

comparison  between  the  motions  in  case  (1)  and  case  (2),  so 
that  to  a  certain  extent,  we  are  deceived  by  analytic  methods. 

The  assemblage  of  all  possible  positions  of  system  (2)  can  be 

represented  not  on  a  plane,  but  on  the  surface  of  an  anchor  ring. 

c 

~D 

Fig.  7. 

We  know  since  the  researches  of  Poincar6  that  the  study  of 

trajectories  represented  by  differential  equations  must  be  founded 

on  analysis  situs.  For  instance,  f(x,  y,  y')  =  0  is  geometrically 
represented  by  a  certain  surface,  and  on  this  surface  defines  a 

geometrical  correspondence  as  follows:  for  each  point  of  the 
surface  it  defines  a  certain  direction  (with  its  sense)  in  the 

tangent  plane.  We  have  then  to  draw  at  each  point  of  the  sur- 
face a  curve  which  is  tangent  to  the  direction  thus  defined. 
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Poincare  showed  that  such  a  problem  cannot  be  handled  unless 

we  know  what  the  genus  of  the  surface  is.  This  already  appears 

in  a  simple  preliminary  question  which  arises  in  that  study.  We 
have  said  that  we  have  a  certain  direction  at  each  point  of  our 

surface.  Can  we  in  general  do  this  without  exception?  In 

general  we  cannot.  In  each  point,  in  general,  we  shall  have  a 

certain  tangent  direction  defined,  but  there  will  be  certain 

singular  points  in  the  correspondence.  The  only  case  in  which 

the  correspondence  can  be  complete  is  when  the  surface  is  of 

genus  one.  For  instance,  there  must  be  singular  points  for  the 

genus  zero.  In  that  case,  Poincare  stated  that  every  trajectory 

is  either  a  closed  one,  or  finishes  in  a  singular  point,  or  is  asymp- 
totic to  a  closed  curve.  For  genus  one,  singular  points  may  be 

absent,  but  the  shapes  of  curves  verifying  the  equation  may 

yet  be  much  more  complicated. 

Differential  equations  of  higher  order  will  also  of  course  (and 

did  indeed  in  some  parts  of  Poincare's  work)  require  the  inter- 
vention of  analysis  situs.  But  the  difficulty  will  be  much  greater, 

as  in  hyper-spaces  this  theory  becomes  as  complicated  as  it  was 

simple  in  Riemann's  hands  when  applied  to  ordinary  surfaces. 
These  higher  chapters  of  analysis  situs  begin,  however,  to  be  well 

known,  and  though  they  could  not  hitherto  be  applied  to  differ- 
ential equations,  their  role  is  already  clear,  owing  to  the  works 

of  Picard  and  Poincare,  in  the  natural  generalization  of  Riemann's 
original  theory.  I  mean  the  difficult  theory  of  algebraic  surfaces 

and  algebraic  functions  of  two  or  more  independent  variables. 

In  the  line  of  partial  differential  equations,  we  must  point  out 

a  very  remarkable  analogous  example  due  to  Volterra  and  con- 
cerning the  problem  of  elasticity.  Generally  speaking,  if  the 

external  forces  and  also  the  peripheric  efforts  acting  on  a  homo- 
geneous solid  body  are  zero,  so  will  be  the  stress  at  every  point 

of  its  substance.  More  precisely  in  such  a  body  of  simply  con- 
nected shape,  stress  could  only  appear  under  those  conditions  if 

singular  points  would  exist  where  they  would  cease  to  obey  the 

general  laws  known  for  their  distribution.     But  the  contrary  can 
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take  place  if  the  body  has  an  annular  form,  and  in  fact  Volterra 

practically  constructed  such  annular  bodies  in  which  stress  exists 
and  can  be  experimentally  perceived,  without  any  external  action 
and  without  any  singular  point. 

3. 

But  examples  of  a  much  more  elementary  character,  belonging 

to  the  very  beginning  of  the  differential  calculus,  can  be  given. 

Let  us  consider  a  point-to-point  correspondence,  defined  by  such 

equations  as 
X  =  /(*,  y),         Y  =  g(x,  y). 

When  does  that  system  of  equations  admit  one  and  only  one 

solution  in  x,  y  if  X,  Y  are  supposed  to  be  given? 
It  is  classical  that  this,  above  all,  depends  on  the  functional 

determinant 
df  df 

D(X,Y) D(x,  y) 

dx  dy dg  dji 

dx  dy 

Suppose  that  this  is  not  zero  in  a  certain  point  x0,  y0.  We  are 

taught  that  in  the  neighborhood  of  (X0,  Y0)  the  system  will  have 

one  and  only  one  solution.  The  tempting  conclusion  is  to 

suppose  that  if  everywhere  this  determinant  is  not  zero,  then 

everywhere  we  will  have  a  one-to-one  correspondence.  This  is 

not  true,  and  indeed  errors  have  been  committed  on  that  subject. 

Even  in  the  simplest  case,  in  which  the  representation  of  the 

■whole  plane  of  XY  on  the  whole  plane  of  xy  is  considered,  a  sup- 

plementary condition  at  infinity  must  be  added  in  order  to 

ascertain  that  the  transformation  is  one-to-one. 

But  now  let  us  replace  our  planes  by  two  spheres,  a  corre- 

spondence being  considered  between  a  point  (x,  y,  z)  of  the  surface 

of  the  first  sphere,  and  a  point  (X,  Y,  Z)  of  the  surface  of  the 

second.  In  this  case  we  find  that  if  a  condition  analogous  to 

that  above  holds  at  every  point  of  the  first  surface  it  will  actually 

insure  a  regular  one-to-one  correspondence. 
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But  if  we  replace  our  spheres  by  two  anchor  rings,  the  results 

will  again  be  completely  and  utterly  changed.  Several  points 
on  the  surface  of  one  anchor  ring  may  correspond  to  one  and  the 

same  point  on  the  surface  of  a  second  one,  although  in  the 

neighborhood  of  each  point  everything  seems  to  take  place  just 

as  in  a  one-to-one  correspondence.  To  see  this,  one  has  only 
to  note  that  a  point  on  the  torus  depends  on  two  angles,  6,  <p. 

If  we  call  0',  <p'  the  two  similar  angles  for  the  second  surface, 

we  have  only  to  define  the  correspondence  by  0'  =  pQ,  <p'  =  q<p, 

p  and  q  being  two  arbitrary  integers.1 
A  curious  fact  is  that  the  same  thing  occurs  with  respect  to 

two  circles.  It  is  evident  that  if  two  points  respectively  move 

on  the  two  circumferences  with  uniform  speed,  one  turning 

exactly  p  times  (p  being  an  integer)  while  the  other  turns  once, 

each  position  of  the  former  will  correspond  to  p  distinct  positions 
of  the  latter,  although  the  ratio  of  speeds  never  changes  signs, 
nor  even  becomes  zero  or  infinite. 

Nothing  of  the  kind  could,  as  we  saw,  occur  on  the  surfaces 

of  our  two  spheres  (nor  of  two  hyperspheres  in  r;-dimensional 

space,  if  n  >  2),  so  that,  in  that  respect,  the  case  of  two  dimen- 
sions proves  more  complicated  than  that  of  three  or  more 

dimensional  spaces. 

These  peculiar  distinctions  are  closely  connected  with  the  fun- 
damental distinctions  of  analysis  situs.  They  are  due  to  the  fact 

that  there  are  many  ways  essentially  distinct  from  each  other,  of 

1  It  is  interesting  to  add  that  as  far  as  ordinary  (closed)  surfaces  are  con- 
cerned, the  genus  1  is  the  only  one  for  which  such  a  paradoxical  circumstance 

can  occur,  in  the  sense  that,  if  each  point  of  a  closed  surface  2,  of  genus  g  >  1, 

corresponds  to  one  (and  only  one)  point  of  a  second  closed  surface  2'  of  the 
same  genus,  and  if,  in  the  neighborhood  of  each  point,  the  relation  thus  defined 
takes  the  character  of  a  one-to-one  regular  correspondence,  it  is  such  on  the 
whole  surfaces. 

This  is  easily  seen  in  noting  that,  more  generally,  if  we  place  ourselves 
under  the  same  conditions  except  that  we  do  not  suppose  the  two  genera, 

g,  g'  to  be  equal,  and  if  h  be  the  number  of  points  of  2  corresponding  to  same 
point  on  2  this  number  h  (which  must  be  the  same  everywhere,  on  account  of 

the  absence  of  singular  points)  is  connected  with  g,  g'  by  the  equation 
g  —  1  =  h(g'  —  1):  a  fact  which  results  from  the  generalized  Euler's  theorem. 
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passing  from  one  point  to  another  of  a  circumference  (according 
to  the  number  of  revolutions  performed  around  the  curve)  whilst 

any  line  joining  two  points  of  the  surface  of  a  sphere  can  be 

changed  into  any  other  one  by  continuous  deformation. 

This  question  of  correspondences  and  Euler's  theorem  on 
polybedra  would  give  us  the  most  simple  and  elementary  in- 

stances in  which  the  results  are  profoundly  modified  by  con- 
siderations of  analysis  situs,  if  another  one  did  not  exist  which 

concerns  the  principles  of  geometry  themselves.  I  mean  the 

Klein-Clifford  conception  of  space.  But  since  this  conception 

has  been  fully  and  definitively  developed  in  Klein's  Evanston 
Colloquium,  there  is  no  use  insisting  on  it.  We  want  only  to 

remember  that  this  question  bears  to  a  high  degree  the  general 

character  of  those  which  were  spoken  of  in  the  present  lecture. 

Klein-Clifford's  space  and  Euclid's  ordinary  space  are  not  only 
approximately,  but  fully  and  rigorously  identical  as  long  as 
the  figures  dealt  with  do  not  exceed  certain  dimensions.  Nothing 

therefore  can  distinguish  them  from  each  other  in  their  infini- 
tesimal properties.  Yet  they  prove  quite  different  if  sufficiently 

great  distances  are  considered. 
This  example,  as  you  see,  exactly  like  the  previous  ones, 

teaches  us  that  some  fundamental  features  of  mathematical 

solutions  may  remain  hidden  as  long  as  we  confine  ourselves 

to  the  details;  so  that  in  order  to  discover  them  we  must  neces- 
sarily turn  our  attention  towards  the  mode  of  synthesis  of  those 

details  which  introduce  the  point  of  view  of  analysis  situs. 



LECTURE  IV 

Elementary  Solutions  of  Partial  Differential  Equations 

and  Green's  Functions 

1.  Elementary  Solutions 

The  expressions  we  are  going  to  speak  of  are  a  necessary  base 

of  the  treatment  of  every  linear  partial  differential  equation, 

such  as  those  which  arise  in  physical  problems.  The  simplest 
of  them  is  the  quantity  employed  in  all  theories  of  the  classical 

equation  of  Laplace:  V2m  =  0;  namely  the  elementary  Newtonian 
potential  1/r,  where 

,2+^2=0 

f-   V(x-a)2+  (y  -  b)2  +  (z  -  c)2 

and  (a,  b,  c)  is  a  fixed  point. 

The  potential  was  really  introduced  first  and  gave  rise  to  the 

study  of  the  equation.  All  known  theories  of  this  equation 

rest  on  this  foundation.     The  analogous  equation  for  the  plane  is 

dx2+  dy2 

Here  we  must  consider  the  logarithmic  potential,  log  1/r,  where 

r  =  V  (x  —  a)2  -f-  (y  —  b)2.  By  this  we  see  that  if  we  wish 
to  treat  any  other  equation  of  the  aforesaid  type,  we  must  try 

to  construct  again  a  similar  solution  which  possesses  the  same 

properties  as  1/r  possesses  in  the  case  of  the  equation  of  Laplace. 
How  is  such  a  solution  to  be  found?  To  understand  it,  we  must 

examine  certain  properties  of  1/r.  First  let  us  note  that  that 

quantity  1/r  is  a  function  of  the  coordinates  of  two  points 

(x,  y,  z)  and  (a,  b,  c)  [the  corresponding  element  log  1/r  in  the 
plane  being  similarly  a  function  of  (.r,  y;  a,  b)].  If  considered 

as  a  function  of  x,  y,  z,  alone  (a,  b,  c,  being  supposed  to  be  con- 

stant) in  the  real  domain,  1/r  is  singular  for  r  =  0;  and  r  =  0 
40 
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only  when  x  =  a,  y  =  b  and  z  =  c  simultaneously.  But  for 
complex  points,  1/r  is  singular  when  the  line  that  joins  (.r,  y,  z) 

and  (a,  b,  c)  is  part  of  the  isotropic  cone  of  summit  (a,  b,  c). 

This  isotropic  cone  is  not  introduced  by  chance,  and  not  any 

surface  could  be  such  a  surface  of  singularity.  It  is  what  we 

shall  call  the  characteristic  cone  of  the  equation.  We  already 
met  with  the  notion  of  characteristics  in  our  first  lecture,  and 

saw  that  it  is  nothing  else  than  the  analytic  translation  of 

the  physical  expression  "waves."  I  must  nevertheless  come 
back  to  it  this  time  in  order  to  remind  you  that  the  word 

"waves"  has  two  different  senses.  The  most  obvious  one  is  the 
following:  Let  a  perturbation  be  produced  anywhere,  like  sound; 

it  is  not  immediately  perceived  at  every  other  point.  There  are 

then  points  in  space  which  the  action  has  not  reached  in  any 

given  time.  Therefore  the  wave,  in  that  sense  a  surface, 

separates  the  medium  into  two  portions  (regions):  the  part 
which  is  at  rest,  and  the  other  which  is  in  motion  due  to  the 

initial  vibration.  These  two  portions  of  space  are  contiguous. 

It  was  only  in  1887  that  Hugoniot,  a  French  mathematician, 

who  died  prematurely,  showed  what  the  surface  of  the  wave  can 

be;  and  even  his  work  was  not  well  known  until  Duhem  pointed 

out  its  importance  in  his  work  on  mathematical  physics. 

A  second  way  of  considering  the  wave  is  more  in  use  among 
physicists.  We  have  not  in  the  first  definition  implied  vibrations. 

If  we  now  suppose  that  we  have  to  deal  with  sinusoidal  vibra- 
tions of  the  classical  form,  the  motion  is  general  and  embraces 

all  the  space  occupied  by  the  air.  Tracing  the  locus  of  all 

points  of  space  in  which  the  phase  of  the  vibration  is  the 
same,  we  determine  a  certain  wave  surface  (or  surfaces). 

It  is  clear  that  these  two  senses  of  the  word  "waves"  are 
utterly  different.  In  the  first  case,  we  have  space  divided  into 

two  regions  where  different  things  take  place,  which  is  not  so 

in  the  second  case.  Certainly,  physically  speaking,  we  feel  a 

certain  analogy  between  them.  But  for  the  analyst,  there  seems 

to  be  a  gap  between  the  two  points  of  view. 
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The  gap  is  filled  by  a  theorem  of  Delassus.  Let  us  consider  any 

linear  partial  differential  equation  of  the  second  order,  and  sup- 
pose that  u  is  a  solution  which  would  be  singular  along  all  points 

of  a  certain  surface,  irix,  y,  z)  =  0.  By  making  some  very  simple 
hypotheses  as  to  the  nature  of  the  singularity,  Delassus  found 
that  this  surface  must  be  a  characteristic  as  defined  in  our  first 

lecture;  that  is,  it  must  verify,  if  the  given  equation  is  V2u  =  0, 
the  (non-linear)  partial  differential  equation  of  the  first  order 

{%)H%>&)'-° 
obtained  by  substituting  for  the  partial  derivatives  of  the  second 

order  of  the  unknown  function  u  in  the  given  equation,  the 

corresponding  squares  or  products  of  derivatives  of  the  first 
order  of  x  (the  other  terms  of  the  given  equation  being  considered 

as  cancelled).  This  is  the  characteristic  equation  corresponding 

to  our  problem.  It  is  the  same  as  the  one  found  by  Hugoniot 

in  studying  the  problem  from  the  first  point  of  view.  This  third 
definition  will  show  us  the  connection  between  the  first  two.  In 

the  first  case,  the  wave  corresponds  to  discontinuity,  for  the 

speeds  and  accelerations  change  suddenly  at  the  wave  surface: 

such  a  discontinuity  is  evidently  a  kind  of  singularity.  In  the 

vibratory  motion  the  general  equation  contains  the  factor 

sin  uir  since  u  =  F  sin  fiir,  where  F  is  the  parameter  corresponding 
to  the  frequency,  and  ir  is  a  function  of  x,  y,  z.  This  form  of  u 

seems  to  show  no  singularity,  for  the  sine  is  a  holomorphic  function 

It  is  nevertheless  what  one  may  call  "practically  singular."  If 
we  suppose  that  the  absolute  magnitude  of  n  is  large,  the  function 

varies  very  rapidly  from  +  1  to  —  1,  it  has  derivatives  which 
contain  u  in  factor,  and  these  derivatives  are  therefore  very 

large.  It  has  a  resemblance  to  discontinuous  function  because 

of  the  large  slope.  So  that,  in  what  may  be  called  "approxima- 
tive" analysis,  it  must  be  considered  as  analogous  to  certain 

discontinuous  functions.  From  that  point  of  view  the  three 
notions  of  waves  are  closely  connected. 
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This  view  of  Delassus  is  the  one  which  will  interest  us  now 

because  in  the  case  of  the  elementary  solution  1/r  the  char- 
acteristic cone  is  a  surface  of  singularity.  We  see  now  in  what 

direction  we  may  look  for  the  solution  of  the  problem.  We 
have  to  find  what  will  be  the  characteristic  cone  or  surface 

corresponding  to  it.  Then  we  must  construct  a  solution  having 

this  as  a  singularity.  The  first  question  is  answered  by  the 

general  theory  of  partial  differential  equations  of  the  first  order. 

We  must  have  a  conic  point  at  (a,  b,  c).  In  general  the  char- 
acteristic cone  is  replaced  by  a  characteristic  conoid  which  has 

curvilinear  generatrices  which  correspond  to  the  physical  "rays." 
Secondly,  we  must  build  a  solution  which  will  have  this  for  a 

surface  of  singularity.  The  first  work  of  general  character  in  this 
direction  was  that  of  Picard  in  1891.  He  considered  the  case 

of  two  variables  and  treated  more  especially  the  equation 

d2u      d2u 

(1)  W+W=CU 
Not  every  equation  of  the  general  type 

.  d2u  ,    _  d2u     ,    „ d2u   ,    A„fc  ,    „„3ti  ,    „ 

AM+B3^+CW+2Dl>:r+2Eay+Fu=0 
can  be  reduced  to  that  form.  But  in  the  elliptic  case  (B2  —AC 
<  0)  it  can,  by  a  proper  change  of  independent  variables,  be 
reduced  to  the  form 

,,.  d2u   ,    d2u  du  du   , 

(1)  d?+W+adx+bdy+CU=° 
(in  which  the  characteristic  lines  are  the  isotropic  lines  of  the 

plane).  Sommerfeld  and  Hedrick  treated  this  more  general 
form  and  showed  for  equation  (1),  as  Picard  had  done  for  the 

equation  (1'),  that  there  exists  an  elementary  solution,  possessing 
all  the  essential  properties  of  log  1/r.     It  is 

P  log  1/r  +  Q 

P  and  Q  being  regular  functions  of  x  and  y.     P  has  the  value  1, 

4 



44  FOXTRTH   LECTURE 

x  =  a,   y  =  b.     In   the   hyperbolic  case  (real   characteristics), 

the  form  to  which  the  equation  can  be  reduced  is  Laplace's  form 

,  .  d2u    .   du   ,    ,  3m  , 

if  the  change  of  variables  is  real;  and  the  corresponding  ele- 
mentary solution  is  of  the  type 

PlogV(*-o)(y-4)  +  Q 

P  and  Q  having  the  same  significations  as  above  (P  is  nothing 

else  than  the  function  which  plays  the  chief  role  in  Riemann's 
method  for  equation  (2)).  Of  course,  if  imaginary  changes  were 

admitted  (which  is  possible  only  if  the  coefficients  are  supposed 

to  be  analytic)  elliptic  equations,  as  well  as  hyperbolic  ones, 

could  be  reduced  to  the  type  (2)  or  as  well,  (1).  The  only 

case  in  which  that  reduction  is  not  at  all  possible,  is  when 

B2  —  AC  =  0,  the  parabolic  case.  This  is  a  much  more  difficult 
case.  It  has  been  treated  only  recently.  There  is  a  new  type 

of  elementary  solution  which  was  given  in  1911  by  Hadamard  in 

the  Comptes  Rendus,  and  for  the  equation  of  heat  with  more  than 
two  variables  by  Georey  that  same  year  (in  the  same  periodical). 

Even  if  we  leave  the  parabolic  case  aside,  the  question  has  a 

new  difficulty  arising  because  it  is  not  possible  to  simplify  by 

changing  variables  as  before  when  there  are  more  than  two  of 
them,  so  that  we  must  then  treat  the  general  case.  The  problem 

was,  however,  first  treated  in  the  case  of 

du   ,    ,  du   ,      du   ,    „ 

dx  dy  dz 

But  not  every  partial  differential  equation  of  the  second  order  in 
three  variables  can  be  reduced  to  this  form.  It  is  important 

nevertheless.  Holmgren  obtained  a  solution  in  form  analogous 

to  1/r,  namely  P\r,  where  P  =  1  for  r  =  0. 
If  we  wish  to  treat  the  general  case  where  the  coefficients  are 

quite  arbitrary,  we  must  try  first  to  form  the  surface  of  singu- 
larity which  is  the  characteristic  conoid.     Suppose  first  that  we 
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have  any  regular  characteristic  surface  of  our  equation  and 

suppose  that  by  a  change  of  variables,  x  =  0  is  the  surface. 

Let  us  write  u  =  xpF  (x,  y,  z).  One  can  show  that,  giving  p 
any  positive  value,  solutions  of  this  form  can  be  found,  F  being 

regular.  Such  is  not  the  case  when  p  is  a  negative  integer;  and 

this  gives  us  again  an  interesting  illustration  of  the  consider- 

ations explained  in  our  first  lecture  in  connection  with  Schoenflies' 
theorem.  Let  p  be  a  negative  integer  and  suppose  that  there  is 
a  solution.     Then  we  have  also  other  values  of  u  of  the  form 

F(x,  y,  z)   i    v  ,  s   —   h  Fi(x,  y,  z) 

(We  can  form  an  infinity  of  these  solutions  because  the  differential 

equation  possesses  an  infinity  of  regular  solutions.)  But  those 
values  of  u  can  be  written 

F  +  x"Ft 

So  that,  if  our  question  is  possible,  it  has  an  infinity  of  solutions. 

By  the  same  reasoning  as  in  the  first  lecture,  we  must  not  wonder 

at  its  being  in  general  not  possible.  There  is  again  this  balancing 

between  infinity  of  solutions  and  their  existence. 

But  we  have  supposed  our  characteristic  surface  to  be  a 

regular  one.  If  we  deal  with  our  characteristic  conoid,  which 

has  (a,  b,  c)  for  a  conic  point,  things  behave  differently;  p  cannot 

have  an  arbitrary  value.  If  the  number  of  independent  vari- 
ables is  n,  we  must  have 

n-  2 

p=   5—,     or (-_ii+1),  -(!=!+,). 
The  first  of  these  values  is,  however,  the  only  essential  one, 

because,  if  we  have  formed  the  (unique)  solution  corresponding 

to  p  =  —  (n  —  2)2,  which  depends  on  x,  y,  z,  a,  b,  c,  we  can 
deduce  all  others  from  it :  we  need  merely  to  differentiate  with 

respect  to  a,  b,  c. 

If  n  is  even,  those  values  of  p  become  negative  integers  and 
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therefore,  on  account  of  what  we  just  said,  there  is,  in  general, 
no  solution  of  the  above  form 

We  have  to  replace  this  by 

«  =  ̂  +  p1iogr 

in  which  T  would  again  be  equal  to  r2,  r  meaning  a  distance  in 
n-dimensional  space,  if  the  higher  terms  (of  the  second  order) 

of  the  given  equation  are  of  the  form  V2w-  However,  if  these 
terms  are  arbitrary,  T  should  be  replaced  by  the  first  member 

of  the  equation  of  the  characteristic  conoid  of  summit  (a,  b,  c). 

The  functions  P,  Q,  Pi  can  easily  be  developed  in  convergent 

Taylor's  series  if  the  coefficients  of  the  equation  are  analytic. 
If  not,  they  still  exist  but  are  much  more  difficult  to  find.  The 

first  result  of  Picard,  concerning  the  special  equation  (1'),  was 
however,  obtained  (by  successive  approximations)  without  any 

assumption  on  the  analyticity  of  c:  Later,  E.  E.  Levi  solved  the 

problem  in  the  same  sense  for  the  general  elliptic  equation. 

The  principle  of  these  methods  of  Picard  and  Levi  in  reality 
is  the  same.  Both  may  be  considered  as  peculiar  cases  of  one 

indicated  by  Hilbert  and  consisting  in  the  introduction  of  the 

first  approximation,  which  presents  a  singularity  of  the  required 

form,  but  does  not  need  to  verify  the  given  equation.  The 

investigation  of  the  necessary  complementary  term  leads 

again  to  an  integral  equation.  I  must  add  that,  for  equa- 
tions of  a  higher  order,  the  extension  of  this  seems  to  offer 

difficulties  of  an  entirely  new  kind,  owing  to  the  fact  that  the 

characteristic  conoid  generally  admits  other  singularities  than  its 

summit  (viz.  cuspidal  lines).  For  the  very  special  case  in  which 

there  are  no  other  terms  than  those  of  the  highest  order,  the 
coefficients  of  those  terms  being  constant,  it  has  however  been 

reduced  to  Abelian  integrals  by  a  beautiful  analysis  of  Fredholm's. 
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2.  Green's  Functions 

Elementary  solutions  are  a  necessary  instrument  for  the 

treatment  of  the  partial  differential  equations  of  mathematical 

physics.  They  are  not  always  sufficient.  They  are  sufficient 

for  the  simplest  of  the  problems  alluded  to  in  our  first  lecture, 

namely  Cauchy's  problem.  But  we  know  that  for  the  ellip- 
tic case,  this  latter  is  not  to  be  considered,  and  we  have  to 

face  others,  such  as  Dirichlet's  problem.  For  Dirichlet's  prob- 
lem (i.  e.  to  find  u  taking  given  values  all  over  the  surface  of 

the  volume  S,  and  satisfying  y~u  =  0),  1/r  is  not  a  sufficient 
function.  We  must  introduce  a  new  function  of  the  form  1/r  +  h 

where  h  is  a  regular  function;  and  h  must  be  such  that  1/r  +  h 

must  be  zero  at  every  point  of  the  boundary  surface.  This  is 

called  Greens  Function.  It  is  the  potential  produced  on  the 

surface  S  by  a  quantity  of  electricity  placed  at  (a,  b,  c)  interior 

to  the  surface,  this  surface  being  hollow,  conducting,  and  main- 
tained at  the  potential  zero.     This  is  its  physical  interpretation. 

For  any  other  linear  partial  differential  equation  of  the  elliptic 

type,  one  has  to  consider  such  Green's  functions  in  which  the 
term  1/r  is  to  be  replaced  by  the  elementary  solution  (so  that, 

at  any  rate,  the  formation  of  this  latter  is  presupposed),  h  still 

being  a  regular  function  (at  least  as  long  as  (a,  b,  c)  remains  fixed 
and  interipr  to  S). 

Similar  sorts  of  Green's  functions  are  also  known  for  higher 
differential  equations,  e.  g.  for  the  problem  of  an  elastic  plate 

rigidly  fastened  at  its  outline,  the  differential  equation  being 

then  V2 V2u  =  0  (in  two  variables  x  and  y  only)  and  the  role  of 

elementary  solution  being  played  by  r2  log  r. 

Like  1/r  and  like  the  elementary  solution  itself,  any  Green's 
function  depends  on  the  coordinates  of  two  points,  A(x,  y,  z) 

and  B(a,  b,  c).  But  the  chief  interest  in  the  study  of  those 

Green's  functions,  the  important  difference  between  them  and 
the  above  mentioned  fundamental  solutions,  corresponds  to  a 

similar  difference  between  Cauchy's  and  Dirichlet's  problems, 
such  as  defined  in  our  first  lecture.     To  understand  this,  let  us 
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remember  that  each  of  those  two  problems  depends  on  three 
kinds  of  elements: 

1.  A  given  differential  equation; 

2.  A  given  surface  (or  hyper-surface  in  higher  spaces)  S; 
3.  A  certain  distribution  of  given  quantities  at  the  different 

points  of  S. 
Each  of  those  elements  has  of  course  its  influence  on  the 

solution  but  not  to  the  same  degree.  The  influence  of  the  form 

of  the  equation  cannot  but  be  a  profound  one.  On  the  contrary, 

the  influence  of  the  quantities  mentioned  in  3  is  comparatively 

superficial,  in  the  sense  that  the  calculations  can  be  carried  pretty 

far  before  introducing  them.  In  other  terms,  if  we  compare  this 

to  a  system  of  ordinary  linear  algebraic  equations,  the  role  of 

the  first  element  may  be  compared  to  that  of  the  coefficients  of 

the  unknowns  (by  the  help  of  which  such  complicated  expres- 
sions as  the  determinant  and  its  minor  determinants  must  be 

formed)  while  the  role  of  the  third  element  resembles  that  of  the 

second  members  which  have  only  to  be  multiplied  respectively 

by  the  minor  determinants  before  being  substituted  in  the 
numerator. 

But  as  to  the  role  of  our  second  element,  the  shape  of  our 

surface  S,  the  answers  are  quite  different  according  to  cases. 

If  we  deal  with  Cauchy's  problem,  that  shape  plays  just  as 
superficial  a  role  as  the  third  element.  For  instance,  in  Rie- 

mann's  method  for  Cauchy's  problem  concerning  equation  (2), 
every  element  of  the  solution  can  be  calculated  without  knowing 

the  shape  of  S  (which  in  that  case  is  replaced  by  a  curve,  the 

problem  being  two-dimensional)  till  the  moment  when  they  have 
to  be  substituted  in  a  certain  curvilinear  integral  which  is  to  be 
taken  along  S. 

But  matters  are  completely  different  in  that  respect  in  the 

case  of  Dirichlet's  problem.  While  one  can  practically  say  that 

there  is  only  one  Cauchy's  problem  for  each  equation,  there  is, 

for  the  same  and  unique  equation  V2"  =  0,  one  Dirichlet's 
problem  for  the  sphere,  one  for  the  ellipsoid,  one  for  the  paral- 
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lelepipedon;  and  these  different  problems  present  very  unequal 
difficulties. 

It  is  clear  that  the  same  differences  will  appear  in  the  mode 

of  treatment  corresponding  to  the  two  problems.  The  elemen- 
tary solution  depends  on  nothing  else  than  the  given  equation 

and  the  coordinates  x,  y,  z,  a,  b,  c,  of  the  two  points  A,  B. 

The  Green's  function  on  the  contrary  depends,  not  only  on 
this  equation  and  these  coordinates,  but  also  on  the  form  of 

the  boundary  S.1 
The  interesting  question  arising  therefrom  is  to  find  how  the 

properties  of  Green's  functions  are  modified  by  the  change  of 
the  shape  of  the  surface.  Let  us  replace  S  by  S',  defined  by  its 
normal  distance  8n  (which  may  be  variable  from  one  point  of  S 

to  another).  Take  two  given  points  A  and  B  within  S.  Then 

there  is  a  certain  form  of  Green's  function  gBA  for  the  surface  S, 
and  if  we  change  from  S  to  S',  gA  changes.    The  change  is 

«n  *  *        f  fd9nA  d9nB*  jo 

danA 
—j —  is  the  rate  of  change  of  gA  relative  to  the  change  of  n. 

Here  8ndS  is  an  element  of  volume  comprised  between  the 

surfaces  S,  S'.  Similar  formulas  hold  for  Green's  functio.ns  for  a 
plane  area.  They  are  like  those  given  by  the  calculus  of  variations 

of  integrals,  though  its  methods  are  not  directly  applicable. 

A  curious  consequence  is  that  from  all  the  Green  functions 

for  all  the  elliptic  partial  differential  equations,  we  can  deduce 

by  proper  differentiations  expressions  verifying  one  and  the 

same  integro-differential  equation,  namely 

S0a  =  S<t>A<t>nZndS 

The  fact  that  in  the  second  member  of  the  equation  (3),  the 

coefficient  of  dndS  is  quadratic  and  symmetric  with  respect  to 

■All  these  observations  quite  similarly  hold  for  the  "mixed  problems" 
alluded  to  in  our  first  lecture,  and  for  the  expressions  introduced  in  their 

treatment  corresponding  to  Green's  functions. 
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expressions  depending  on  the  points  A  and  B  respectively,  is  also 

an  important  one.  Useful  inequalities,  which  could  not  easily 
be  obtained  otherwise,  can  be  deduced  therefrom. 

Besides  that  study  of  the  variation  of  the  numerical  values 

of  Green's  functions,  the  influence  of  the  shape  of  S  can  be 
studied  from  another  point  of  view,  I  mean  its  influence  on  their 

analytical  properties,  and  this  has  been  the  occasion  for  important 

recent  results.  The  complementary  term  k  in  a  Green's  function 
remains  regular  as  long  as  one  of  the  points  remains  fixed  and 

interior  to  the  considered  domain;  but  it  offers  a  peculiar 

singularity  when  the  two  points  A,  B  simultaneously  approach 

the  same  point  P  of  the  boundary;  and  that  singularity  looks 

at  first  like  a  very  difficult  one.  Its  study  is  nevertheless 

simplified  by  the  fact  that  it  only  depends  on  the  shape  of  5 

in  the  immediate  neighborhood  of  P. 

Fig.  8. 

In  the  case  of  the  plane,  for  instance,  if  two  closed  contours 

S,  S',  limiting  two  different  areas  have  a  certain  arc  MN  in 

common1  (Fig.  8),  if  P  is  a  point  of  this  arc,  and  if  G,  G'  be  the 

two  Green's  functions  corresponding  respectively  to  those  con- 

tours, the  difference  G  —  G'  will  be  a  completely  regular  function 

(admitting  a  development  in  a  convergent  Taylor's  series)  when 
A  and  B  are  both  very  near  to  P. 

1  The  two  contours  are  understood  to  be  one  and  the  same  side  of  that 
arc  MN. 
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We  have  now  to  inquire  what  the  singularity  of  G,  for  instance, 

will  be.  After  having  received  a  first  partial  answer  in  interest- 

ing papers  by  several  Italian  geometers,  this  question  has  been 

completely  solved  by  E.  E.  Levi  for  a  function  analogous  to  the 

ordinary  Green's  function,  and  more  recently  by  P.  Levy  for 
this  latter  itself. 

The  answer  thus  obtained  is  remarkably  simple  in  the  case 

of  two  dimensions.  P.  Levy  also  works  out  the  three-dimensional 
problem,  but  there  the  results  are  much  more  complicated. 

As  to  Green's  function  as  a  whole  (and  not  only  the  singular 
part  of  it)  it  must  be  well  understood  that  its  value  for  any  two 

given  points  of  the  area  or  even  such  elements  as  its  normal 

derivative  in  one  point  of  the  contour,  profoundly  depends  on 

the  form  of  every  part  of  this  latter,  however  distant  from  the 

point  or  points  in  question. 

By  paying  attention  to  this  fact,  we  must  expect,  on  account 
of  what  was  seen  in  the  preceding  lecture,  that  considerations  of 

analysis  situs  will  be  important  in  that  question.  At  first  this 

does  not  seem  to  be  the  case,  and  the  most  important  methods 

for  the  resolution  of  Dirichlet's  problem  are  common  to  areas 
of  any  genus  (although  with  some  modifications  of  detail,  as 

will  be  seen  for  Fredholm's  method  in  Kellogg's  Dissertation). 
But  other  views  of  the  problem  will  show  that  the  influence  of 

analysis  situs  does  exist  here  and  is  perhaps  even  more  astonish- 
ingly profound  than  in  any  of  the  questions  examined  in  our  last 

lecture. 

If  we  consider  again  Dirichlet's  problem  for  an  area  in  the 
plane,  we  shall  see  that  the  analytical  properties  of  the  corre- 

sponding Green's  function  are  very  different  if  that  area  has  one 
or  several  boundaries. 

Let  us  take  the  first  case.  In  this  case,  the  plane  area  can 

be  represented  conformally  on  a  circle  of  unit  radius  with  the 

origin  as  center.  It  is  easily  seen  that,  in  such  a  conformal 

representation,  Green's  function  keeps  its  values,  and  this  brings 

to  light  a  remarkable  consequence  concerning  the  six  Green's 
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functions  generated  by  four  points  taken  two  by  two.  The 

six  quantities  have  a  relation  between  them  and  give  rise  to  a 

peculiar  sort  of  geometry,  which  not  only  resembles  the  ordinary 

non-Euclidean  geometry,  but  can  be  reduced  to  it  by  a  simple 
transformation. 

In  an  area  with  two  boundaries  (annular  area)  matters  are 

quite  different.  Schottky  has  shown  that  if  we  take  two  such 

areas,  S,  S',  having  each  two  boundaries,  they  are  not  in  general 
conformally  representable  on  one  another.  Each  one  of  them 

will  be  represented  on  the  area  between  two  concentric  circles. 
But  the  ratio  of  the  radii  of  these  circles  must,  in  each  case,  be 

chosen  properly,  and,  therefore,  will  not,  in  general,  be  the  same 

for  2  and  for  2'. 
In  this  last  case,  the  relation  between  the  six  Green  functions 

will  not  hold,  and  the  properties  of  our  Green's  functions  will  be 
far  less  simple.  They  will  become  still  more  complicated  for 

more  than  two  boundaries.  We  again  have  here  an  important 

instance  of  the  role  played  by  analysis  situs  in  analytical  prop- 

erties, and  as  we  have  stated  that  Green's  functions  are  related 
to  all  the  chief  topics  treated  in  our  preceding  lectures,  this  is 

perhaps  the  best  conclusion  to  be  given  to  the  ensemble  of  them. 
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